
UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ (UTFPR)

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT – CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE
INTEGRADO AO WHATSAPP

PONTA GROSSA

2023

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT – CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE

INTEGRADO AO WHATSAPP

NekoChat - Chat for managing customer support integrated with WhatsApp

Trabalho de Conclusão de Curso de graduação
apresentado como requisito para obtenção do título
de Tecnólogo em Análise e Desenvolvimento de
Sistemas da Universidade Tecnológica Federal do
Paraná (UTFPR).
Orientador: Prof. Dr. Richard Duarte Ribeiro
Coorientador: Prof. MSc. Vinícius Camargo Andrade

PONTA GROSSA

2023

Esta licença permite remixe, adaptação e criação a partir do trabalho, para fins não co-
merciais, desde que sejam atribuídos créditos ao(s) autor(es). Conteúdos elaborados
por terceiros, citados e referenciados nesta obra não são cobertos pela licença.4.0 Internacional

https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT – CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE

INTEGRADO AO WHATSAPP

Trabalho de Conclusão de Curso de graduação
apresentado como requisito para obtenção
do título de Tecnólogo em Análise e
Desenvolvimento de Sistemas da Universidade
Tecnológica Federal do Paraná (UTFPR).

Data de aprovação: 16/outubro/2023

Nome completo e por extenso do Membro 1 (de acordo com o Currículo Lattes)
Título (Especialização, Mestrado, Doutorado)

Nome completo e por extenso da instituição a qual pertence

Nome completo e por extenso do Membro 2 (de acordo com o Currículo Lattes)
Título (Especialização, Mestrado, Doutorado)

Nome completo e por extenso da instituição a qual pertence

Nome completo e por extenso do Membro 3 (de acordo com o Currículo Lattes)
Título (Especialização, Mestrado, Doutorado)

Nome completo e por extenso da instituição a qual pertence

PONTA GROSSA

2023

Dedico este trabalho à minha querida família,
que tem sido a minha âncora durante toda a

jornada da elaboração deste trabalho.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer aos meus orientadores, o Prof. Dr. Richard Ribeiro

e o Prof. MSc. Vinícius Camargo Andrade, pela sabedoria com que me guiaram ao longo desta

trajetória. Suas orientações e conselhos foram cruciais para o sucesso deste trabalho.

Também quero deixar registrado o meu profundo reconhecimento à minha família. Sem

o apoio incondicional de vocês, seria muito difícil vencer os desafios que surgiram no caminho.

Mãe, pai, e todos os meus entes queridos, este trabalho é uma pequena homenagem à gran-

deza do apoio que vocês me proporcionaram. As noites em que abdicaram de meu tempo para

me ouvir, as palavras de encorajamento nos momentos de dúvida, e a fé inabalável em meu

potencial moldaram este projeto.

Por fim, expresso minha gratidão a todos que, de alguma forma, contribuíram para a

realização desta pesquisa. Seja através de discussões inspiradoras, apoio moral ou até mesmo

uma palavra amiga nos momentos de dúvida, cada um de vocês teve um impacto significativo.

Esta conquista não é apenas minha, mas de todos nós, e é um testemunho do poder da

colaboração e do apoio mútuo. Obrigado por fazerem parte desta jornada.

RESUMO

O atendimento ao cliente evoluiu significativamente, passando de um mero meio para solucionar

problemas para se tornar uma estratégia voltada para a construção de confiança e o estabele-

cimento de um diálogo contínuo com o consumidor. No entanto, a comunicação utilizada nesse

atendimento deve ser acessível e fornecer ferramentas que permitam às equipes de suporte

manter uma rotina eficaz. O objetivo deste projeto é desenvolver uma solução que integre um

método de comunicação amplamente utilizado no país com uma aplicação que ofereça ferra-

mentas para a gestão de conversas. Para isso, foi criado um aplicativo de atendimento que se

integra ao WhatsApp, e essa integração oferece uma oportunidade otimizar o atendimento, dis-

tribuir a carga de trabalho entre as equipes e fornecer gerenciamento de tarefas relacionadas

às conversas. Como resultado, é possível utilizar uma única ferramenta, vinculada a um único

número de celular, para facilitar o atendimento ao consumidor de empresas que utilizam, ou

desejam utilizar, o WhatsApp como principal meio de comunicação com seus clientes. Isso re-

presenta uma abordagem mais eficiente e conveniente para as empresas e uma experiência

aprimorada para os consumidores.
Palavras-chave: atendimento ao consumidor; aplicativo web; whatsapp; gereciamento de tare-

fas.

ABSTRACT

Customer service has evolved significantly, going from just a way to solve problems to becoming

a strategy focused on building trust and establishing an ongoing dialogue with the consumer.

However, the communication used in this service should be accessible and provide tools that

enable support teams to maintain an effective routine. The goal of this project is to develop a so-

lution that integrates a widely used communication method in the country with an application that

offers conversation management tools. To achieve this, it was created a customer service app

that integrates with WhatsApp, and this integration provides an opportunity to optimize service,

distribute the workload among teams, and provide task management related to conversations.

As a result, it’s possible to use a single tool, linked to a single phone number, to streamline

customer service for companies that use or want to use WhatsApp as their primary means of

communication with their customers. This represents a more efficient and convenient approach

for businesses and an enhanced experience for consumers.
Keywords: customer service; web application; whatsapp; task management.

LISTA DE FIGURAS

Figura 1 – Ilustração do desenvolvimento incremental 19

Figura 2 – Ilustração da entrega incremental . 20

Figura 3 – Ilustração de entrada-saída de teste de programa 29

Figura 4 – Ilustração do ciclo de vida de um componente 42

Figura 5 – Ilustração do Diagrama de Entidade-Relacionamento do Banco de Dados 55

Figura 6 – Ilustração da tela de Login . 57

Figura 7 – Ilustração da tela de Registro . 58

Figura 8 – Ilustração da tela de Recuperação de senha 59

Figura 9 – Ilustração da tela de definição da nova senha 59

Figura 10 – Ilustração do formulário de criação de tarefa 63

Figura 11 – Ilustração do formulário de criação de cliente 64

Figura 12 – Ilustração da conversa no aplicativo . 65

Figura 13 – Ilustração da conversa no WhatsApp Desktop 65

Figura 14 – Ilustração da tela de conversa . 68

Figura 15 – Ilustração da cobertura de testes unitários 71

Figura 16 – Ilustração dos arquivos cobertos pelos testes unitários 71

Figura 17 – Ilustração das estatística da cobertura dos testes unitários 76

Figura 18 – Ilustração das quantidades da cobertura dos testes unitários 76

LISTAGEM DE CÓDIGOS FONTE

Listagem 1 – Exemplo de função middleware . 36

Listagem 2 – Exemplo de código JS no Vue.js . 37

Listagem 3 – Exemplo de código HTML no Vue.js 37

Listagem 4 – Exemplo de um SFC no Vue.js . 38

Listagem 5 – Exemplo da Options API . 39

Listagem 6 – Exemplo da Composition API . 40

Listagem 7 – Entrada para novas conversas vindas do WhatsApp 61

Listagem 8 – Checagem de tarefas ativas relacionadas ao número de WhatsApp . 62

Listagem 9 – Checagem usuários responsáveis anteriormente pela conversa . . . 66

Listagem 10 – Checagem usuários disponíveis para receber a nova conversa . . . 67

Listagem 11 – Verificação se o usuário é ou não administrador 69

Listagem 12 – Verificação se o usuário é ou não administrador 69

SUMÁRIO

Sumário . 8

1 INTRODUÇÃO . 10

1.1 Objetivos . 11

1.1.1 Objetivo geral . 11

1.1.2 Objetivos específicos . 11

2 REFERENCIAL TEÓRICO . 13

2.1 Atendimento ao consumidor . 13

2.2 Aplicativos de mensagens instantâneas 15

2.2.1 WhatsApp . 16

2.3 Processo de Desenvolvimento . 17

2.3.1 Desenvolvimento Incremental . 18

2.3.1.1 História . 18

2.3.1.2 Aplicação na engenharia de software . 18

2.3.1.3 Entrega Incremental . 20

2.3.2 Engenharia de requisitos . 21

2.3.2.1 Elicitação e análise de requisitos . 22

2.3.2.2 Descoberta de requisitos . 23

2.3.2.3 Validação de requisitos . 24

2.3.2.4 Gerenciamento de requisitos . 25

2.3.3 Casos de uso . 25

2.3.3.1 História . 26

2.3.3.2 Partes do corpo de um caso de uso . 26

2.3.3.3 Formatos de casos de uso . 27

2.3.4 Testes . 28

2.3.4.1 Testes unitários . 31

2.4 Ferramentas de Desenvolvimento Web 33

2.4.1 Node.js(v18.16.0) e Express(v4.17.3) . 35

2.4.2 Vue.js(3.2.25) . 37

3 DESENVOLVIMENTO . 43

3.1 Levantamento de Requisitos . 43

3.1.1 Identificação das Partes Interessadas e Metodologia 43

3.1.2 Lista de Requisitos . 43

3.1.3 Requisitos Rejeitados . 45

3.1.4 Categorização dos Requisitos . 46

3.2 Modelagem . 47

3.2.1 Casos de uso . 47

3.2.1.1 Caso de Uso 1: Sistema de Atendimentos 47

3.2.1.2 Caso de Uso 2: Auto-Atribuição de Conversas 50

3.2.1.3 Caso de Uso 3: Garantia de Qualidade . 51

3.2.1.4 Caso de Uso 4: feedback Loop . 52

3.2.2 Diagramas de entidade-relacionamento . 54

3.3 Desenvolvimento . 56

3.3.1 Autenticação . 56

3.3.1.1 Login . 56

3.3.1.2 Register . 57

3.3.1.3 ForgotPassword . 58

3.3.1.4 Sistema de atendimentos . 60

3.3.1.5 Auto-Atribuição de Conversas . 66

3.3.1.6 Garantia de Qualidade . 68

3.3.1.7 Feedback Loop . 70

3.4 Testes . 70

4 CONCLUSÃO . 77

REFERÊNCIAS . 79

10

1 INTRODUÇÃO

Atendimento ao cliente, uma prática no mundo dos negócios, serve como uma ponte

entre a empresa e seus consumidores. Sheth, Jain e Ambika (2020) explicam que o suporte ao

cliente é uma função administrativa que lida com o atendimento à consultas de clientes, recla-

mações, devoluções de mercadorias e questões relacionadas a pagamentos, como a cobrança

de contas em atraso. Surgindo com o intuito primordial de resolver inquietações dos clientes

acerca de produtos ou serviços oferecidos, esse canal transcendeu suas funções iniciais. Não

se trata apenas de solucionar problemas, mas também de ser um meio onde os consumidores

podem expressar suas reclamações, sugestões e feedbacks.

Segundo Sheth, Jain e Ambika (2020), o suporte ao cliente desempenha um papel im-

portante, servindo como um canal pelo qual os clientes mantêm uma conexão significativa com

uma empresa. Além de fornecer soluções, o atendimento ao cliente busca estabelecer uma

relação de confiança, promovendo um diálogo contínuo com o consumidor.

As companhias de tecnologia geralmente dispõem de um setor de atendimento ao cli-

ente para sanar dúvidas ou problemas que os consumidores possam ter em relação aos produ-

tos ou serviços. Kumar et al. (2017) explica que o objetivo principal dessa área é manter uma

boa relação com o cliente, pois um cliente fiel não só ajuda as companhias a divulgarem no-

vos produtos, como também os serviços, por indicação. Sharma (2012), por sua vez, constata

que diversas pesquisas já demonstraram a existência de uma ligação entre o atendimento ao

cliente, a sua satisfação e a fidelidade à marca.

Reconhecendo a imperatividade do atendimento ao cliente, o próximo passo é discer-

nir como esse contato direto pode ser efetivamente conduzido. A questão então passa a ser:

quais são as melhores tecnologias atualmente disponíveis para otimizar esse contato direto? A

resposta à essa pergunta pode variar dependendo do perfil do público-alvo e da natureza do

negócio, mas o objetivo permanece o mesmo: estabelecer um canal de comunicação eficiente

e confiável com o consumidor.

Segundo pesquisa da Opinion Box citada por Salgado (2022), aplicativos de mensagens,

em especial o WhatsApp, são amplamente usados por brasileiros para se comunicar com em-

presas. Do total de entrevistados, 80% afirmaram usar o WhatsApp para este fim. Em termos de

preferências dos clientes, 78% dos entrevistados consideram o aplicativo ideal para esclarecer

dúvidas e solicitar informações, 69% para suporte técnico e 53% para receber promoções.

Outra pesquisa realizada pelo IBGE (2022), apresenta que 155,2 milhões de brasileiros

acima de 10 anos têm celular para uso pessoal, correspondendo a 84,4% dessa faixa etária em

2021 .

Diante da crescente importância do atendimento ao cliente, uma abordagem adequada

pode não só fidelizar um consumidor, mas também estreitar laços, criando uma relação de

confiança e lealdade entre empresa e cliente. No Brasil, um país de dimensões continentais

e diversidade de hábitos, é essencial identificar os meios de comunicação mais eficazes para

11

atingir esse objetivo. As pesquisas citadas apontam que o WhatsApp se destaca, atualmente,

como a principal ferramenta de comunicação entre os brasileiros, refletindo sua praticidade e

imediatismo.

Vendo essa tendência, foi notada uma chance: criar um aplicativo de atendimento ao

cliente que se integre ao WhatsApp. Esta solução não apenas capitalizaria na popularidade do

aplicativo, mas também incluiria recursos adicionais para aprimorar a interação.

Sheth, Jain e Ambika (2020) comentam que um aplicativo de suporte pode auxiliar os

consumidores a obterem a assistência de que necessitam com mais facilidade e celeridade.

Isso conduz a um aumento dos níveis de satisfação com o produto ou serviço e auxilia na fideli-

zação dos clientes. Eles também concordam com Muller (1991) que afirma que uma assistência

bem estruturada pode tornar uma organização diferente das outras do mesmo segmento e pro-

porcionar uma vantagem competitiva. Por fim, Chen e Popovich (2003) mencionam o auxílio na

coleta de dados, onde um aplicativo de suporte pode recolher informações das dúvidas, proble-

mas e opiniões dos clientes. Estas informações podem ser aplicadas para o aperfeiçoamento

do produto ou serviço, identificação de tendências e padrões, e decisões tomadas com base

em dados.

Resumindo, tal aplicativo tem a capacidade de promover uma melhor experiência ao

cliente, otimizar processos, entregar atendimento sob medida e proporcionar uma vantagem no

mercado.

A crescente popularidade do WhatsApp entre os brasileiros ressalta sua importância

estratégica para negócios.

Com a evolução constante da internet e das ferramentas de desenvolvimento, é oportuno

criar uma aplicação web que auxilie os profissionais a oferecer suporte via WhatsApp, tendo em

vista os benefícios já mencionados.

1.1 Objetivos

A seguir, serão demonstrados os objetivos deste projeto:

1.1.1 Objetivo geral

Desenvolver um aplicativo de atendimento ao consumidor que utiliza troca de mensa-

gens, recursos de administração e distribuição das conversas com os clientes entre os membros

da equipe de suporte.

1.1.2 Objetivos específicos

Para atingir o objetivo geral são necessários os seguintes objetivos específicos:

12

• Levantar requisitos funcionais e não funcionais do aplicativo.

• Modelar o software.

• Implementar o software utilizando Node.js e Vue.js.

• Validar aplicação utilizando o método teste unitário.

13

2 REFERENCIAL TEÓRICO

No presente capítulo, serão apresentados e discutidos os conceitos, tecnologias e ferra-

mentas que fundamentam este trabalho.

2.1 Atendimento ao consumidor

Bodet (2008) destaca que a fidelidade dos clientes é essencial em estudos de marke-

ting e estratégias de gestão, principalmente devido à acirrada concorrência nas indústrias de

serviços. O foco central é a relação cliente-empresa, que é vital na estratégia de marketing

de relacionamento com o consumidor. Já Posselt e Gerstner (2005) argumentam que melho-

rar a satisfação do cliente potencializa sua fidelidade, impactando positivamente os lucros das

empresas.

Uma maneira de avaliar a satisfação de um cliente com um serviço é pedir para ele

compará-lo com um padrão ou expectativa que tinha antes de usufruí-lo (OLIVER, 1977; OLI-

VER, 1993; POSSELT; GERSTNER, 2005). O surgimento da Internet auxiliou estabelecimentos

de venda on-line a automatizarem diversos serviços, o que dispensou a necessidade de uma

comunicação pessoal entre as pessoas, uma vez que passou a ser possível fazer tudo por um

computador (POSSELT; GERSTNER, 2005).

Estudos anteriores em ciência do comportamento indicam que o lapso de tempo após a

prestação de um serviço pode interferir na opinião de um cliente a respeito dele. Quando é feito

uma análise a satisfação geral com o serviço, os clientes podem notar uma maior relevância

para os serviços pós-venda do que para os pré-venda devido a um “efeito de finalização do

serviço” ou “efeito de recência”. Um efeito de recência é quando um indivíduo dá à informação

vista depois um peso maior do que a vista antes (POSSELT; GERSTNER, 2005).

Os clientes terão a oportunidade de experimentar dois tipos diferentes de serviços: um

que ocorre pré-venda e outro pós-venda. Uma maneira prática de diferenciá-los é examinar

as dimensões do serviço antes de finalizar a aquisição e após receber o produto (POSSELT;

GERSTNER, 2005).

Foi estimado que a satisfação pós-venda do cliente com a intenção de voltar a comprar

é dez vezes mais relevante do que a satisfação pré-venda com a intenção de voltar a comprar,

e que a satisfação pós-venda, em geral, é quinze vezes mais relevante do que a pré-venda.

Diante desses efeitos de recência, foi recomendado que os estabelecimentos de venda on-line

aumentem os recursos disponíveis no processo pós-venda para aumentar a hipótese do cliente

realizar uma nova compra e aumentar as avaliações positivas gerais em relação ao produto

(POSSELT; GERSTNER, 2005).

Os itens mais relevantes no processo pós-venda para concretizar uma nova compra são

(POSSELT; GERSTNER, 2005):

14

1. O produto satisfez as expectativas;

2. A qualidade do atendimento ao consumidor;

3. A entrega do produto no tempo esperado;

4. A disponibilidade do produto desejado.

Em relação à avaliação do serviço em geral, os itens são os mesmos, mas a sua relevância é

diferente (POSSELT; GERSTNER, 2005):

1. A entrega do produto no tempo esperado;

2. O produto satisfez as expectativas;

3. Atendimento ao consumidor;

4. A disponibilidade do produto desejado.

O atendimento ao consumidor é formado pelas tarefas de entrega, instalação, manu-

tenção, financiamento, solução de dúvidas e tratamento de queixas que os clientes podem ter

depois de uma aquisição e durante o uso de um produto ou serviço (SHETH; JAIN; AMBIKA,

2020).

Um dos princípios de gestão de qualidade, o de foco no cliente, considera a comunicação

com os clientes uma das ações possíveis e apresenta uma série de benefícios relacionados à

mesma. Como é possível observar, há quatro ações possíveis que são dedicadas ou incluem

o atendimento ao cliente, sendo elas (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS,

2015):

• Ter ciência das necessidades e expectativas atuais e futuras dos clientes.

• Planejamento, projeto, desenvolvimento, produção, entrega e suporte a produtos e ser-

viços para atender às necessidades e expectativas dos clientes.

• Acompanhar e supervisionar a satisfação do cliente e tomar as ações adequadas;

• Gerir as relações com os clientes ativamente forma para alcançar o sucesso.

Os benefícios mostrados confirmam o que as companhias suspeitavam sobre a melhoria

da satisfação do cliente, sendo um aumento do valor para o consumidor, da sua satisfação, da

fidelidade, e da hipótese de repetição de negócios. Além disso, as empresas têm uma melhoria

na reputação, uma ampliação da base de clientes e um aumento da receita e participação no

mercado (ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS, 2015).

15

2.2 Aplicativos de mensagens instantâneas

Aplicações de conversa, também chamados de aplicativos de mensagens instantâneas.

São sistemas que permitem a comunicação em tempo real entre os usuários. Eles permitem a

troca de mensagens, geralmente em texto, imagens, áudios ou vídeos, com um ou mais usuários

(PCMAG, 2023b).

Podem ser utilizados no trabalho ou na vida pessoal, além de poderem ser usados

em uma grande variedade de dispositivos, como celulares, tablets, notebooks, e computadores

desktops (META, 2021). Alguns deles têm recursos extras, como chamadas de voz e de vídeo,

conversas em grupo, opção de compartilhamento de arquivos e conexão com outros servidores

(MAIZE, 2020).

São divididos em dois grupos principais: aplicações de conversação independentes ou

integradas com outro sistema. As independentes foram criadas apenas para trocar mensagens e

podem oferecer as outras funcionalidades mencionadas acima. As integradas são construídas

a partir de outro serviço, como plataformas de mídias sociais ou sistemas de e-mail (MAIZE,

2020).

Eles são uma forma conveniente e eficiente de se comunicar com outros em tempo real,

tanto em suas vidas pessoais quanto profissionais (SALGADO, 2022).

A história dos aplicativos de conversa começa nos anos setenta, quando o primeiro

sistema de conversação chamado Talkomatic foi criado no computador PLATO na Universidade

de Illinois. Era uma sala de conversação que possibilitava a cinco pessoas conversarem entre si

em tempo real. Talkomatic foi inovador para a sua época por ser a primeira vez que as pessoas

puderam se comunicar entre si em tempo real via uma rede de computadores (WOOLLEY,

1994).

Em 1988, o Internet Relay Chat (IRC) foi criado, permitindo que as pessoas conversas-

sem em tempo real através de uma conexão de servidores (REID, 1991). Os usuários podiam

criar salas e convidar outros para participarem (SIMPSON, 2000). Ele se popularizou nos primei-

ros dias da internet e, ao longo dos anos, construiu o caminho para os aplicativos de conversas

modernos, inovando com diversas funcionalidades.

Desenvolvido em 1996, ICQ permitiu aos seus usuários enviar mensagens entre eles,

e em 1997 atingiu a marca de 1 milhão de usuários (TECHTUDO, 2019). Após isso, surgiram

outros competidores no mercado, que marcam a história da Internet e a popularização desse

tipo de comunicação. Alguns deles são o AOL Instant Messenger (AIM), o MSN Messenger, e o

Yahoo Messenger.

Nos primeiros anos do novo milênio, as redes sociais começaram a surgir e a incorporar

a tecnologia de troca de mensagens em seus novos sistemas. O Facebook lançou em 2011 o

Facebook Messenger (MESSEGER, 2018) e o Twitter introduziu as mensagens diretas no ano

de 2013 (PEREZ, 2015). Isso possibilitou que os usuários se comunicassem diretamente nas

16

redes sociais. Em anos recentes, aplicativos como WhatsApp1, WeChat2 e Line 3 conseguiram

manter a marca de centenas de milhares de usuários no mundo todo, tornando-os uma parte

importante de como as pessoas se comunicam diariamente (BAROT; OREN, 2015).

2.2.1 WhatsApp

Como comentado anteriormente, o WhatsApp tem domínio sobre o mercado mundial e

nacional, tendo mais de cinco bilhões de downloads, somente na Google Play Store (GOOGLE

PLAY STORE, 2023). O aplicativo está diariamente recebendo aproximadamente 100 bilhões de

mensagens (SINGH, 2020), levantando a questão sobre quais tecnologias, designs do sistema,

ou arquitetura dos servidores conseguem suportar tamanha demanda de troca de dados.

No que diz respeito à interface dos usuários, presente em aparelhos iOS, Android, desk-

top e web, as seguintes tecnologias são usadas em cada uma dessas plataformas (CRESSLER,

2021):

• Android: Java;

• iOS: Swift;

• Aplicativo Web: JavaScript/HTML/CSS;

• Aplicativo Mac Desktop: Swift/Objective-C;

• Aplicativo PC Desktop: C/C#/Java;

Outro fator relevante a ser considerado, além das linguagens de programação, é o banco

de dados. O WhatsApp utiliza o SQLite, um banco de dados independente, autônomo e rela-

cional que pode ser usado pelo aplicativo sem ser instalado no dispositivo. Para evitar custos

adicionais, sejam financeiros ou computacionais, ao invés de baixar as conversas da nuvem

toda vez que o serviço é iniciado, o WhatsApp utiliza esse banco para guardar as mensagens

localmente (CRESSLER, 2021).

No lado do servidor, considerando-se o conhecimento que está disponível para o público,

o design do sistema é como descrito a seguir (CRESSLER, 2021):

• Erlang é a linguagem de programação principal;

• FreeBSD é o sistema operacional;

• Ejabberd é a aplicação servidor;

• BEAM é a máquina virtual criada em Erlang;

1 WhatsApp: https://www.whatsapp.com
2 WeChat: https://www.wechat.com
3 Line: https://line.me/en/

17

• Mnesia é o banco de dados criado em Erlang;

• YAWS é o servidor web de multimídia deles.

O aplicativo usa um protocolo diferente para se comunicar com os clientes, uma versão

modificada XMPP. O protocolo abre um socket SSL nos clientes para os servidores do What-

sApp, e todas as mensagens enviadas para ele são colocadas em uma fila nos servidores até

que o cliente as abra ou reconecte nesse socket para recebê-las. Após o cliente adquirir a

mensagem com êxito, uma confirmação de sucesso é enviada novamente para o servidor. O

servidor envia isso para o remetente original, informando que aquela mensagem foi recebida e

adicionando as marcas de seleção ao lado da mensagem enviada (CRESSLER, 2021).

2.3 Processo de Desenvolvimento

Existem diversas maneiras de criar um aplicativo para atender às demandas ou neces-

sidades de um determinado problema. Em geral, cada uma dessas maneiras segue os mesmos

passos, a principal diferença é a quantidade e ordem de vezes que eles são executados ao

longo do processo de construção (BUDGEN, 2003).

Alguns exemplos são o processo de desenvolvimento linear, incremental, reativo e ori-

entado a reúso (BUDGEN, 2003; SOMMERVILLE, 2011). A utilização desses formatos não é

restrita a um só, e muitas vezes, eles são usados em conjunto, especialmente para a criação de

sistemas complexos (SOMMERVILLE, 2011).

O linear é mais indicado para projetos bem estruturados e com um longo prazo de en-

trega (BUDGEN, 2003). Este formato contempla as atividades básicas do ciclo de especifica-

ção, desenvolvimento, validação e evolução, representando cada uma como etapas diferen-

tes, como: especificação de requisitos, projeto de software, implementação, testes, entre outros

(SOMMERVILLE, 2011).

O formato incremental é usado em projetos que ainda precisam demonstrar a sua vi-

abilidade, estabelecer uma posição no mercado de forma rápida, ou explorar um mercado já

existente. Os projetos que usam esse formato seriam aqueles concebidos como um pacote de

aplicações, como software de escritório, jogos, e sistemas operacionais. Além também daque-

les que precisam de uma interação próxima dos usuários finais durante o seu desenvolvimento,

sendo isso o principal motivo pela escolha deste formato para o projeto a ser construído neste

trabalho (BUDGEN, 2003).

O reativo, que a evolução do sistema consiste principalmente na resposta do que o de-

senvolvedor considera como necessária. Muitos projetos de código-livre e sites são construídos

por esse método (BUDGEN, 2003).

Por fim, tem-se o orientado a reúso. Esta abordagem é fundamentada na existência

de um considerável número de componentes que podem ser reaproveitados. O processo de

18

formação do sistema se concentra na união desses elementos em um sistema existente, ao

invés de partir do zero (SOMMERVILLE, 2011).

Como dito anteriormente, o formato de processo que será utilizado neste projeto será o

incremental. A seguir, o processo será descrito com mais clareza para elucidar a sua utilização

e detalhes.

2.3.1 Desenvolvimento Incremental

Uma das principais deficiências do processo de desenvolvimento linear é a necessidade

de identificar e resolver logo no começo do projeto os itens necessários para o futuro sistema.

Isso é inaplicável em diversos casos, e, apesar de técnicas sofisticadas para determinar esses

requisitos, existem muitas dúvidas e possíveis lacunas (BUDGEN, 2003).

Outras áreas da engenharia resolvem isso criando um protótipo para analisar o problema

e possíveis soluções. Contudo, quando se pensa em um aplicativo, esse conceito é mais difícil

de ser definido com clareza. Para outras áreas da engenharia de software, um protótipo é a sua

primeira versão, ou o formato de um modelo que será usado para fins de escala (BUDGEN,

2003).

2.3.1.1 História

A metodologia foi inicialmente desenvolvida por Walter Shewhart em 1930, o pioneiro

do ciclo “Planejar, Fazer, Verificar, Agir“. Foi aplicada em projetos como o jato X-15 nos anos

1950 e o Project Mercury da NASA nos anos 1960 (LARMAN; BASILI, 2003). Larman e Basili

encontraram a primeira menção do método em um relatório de 1968 de Brian Randell e F.W.

Zurcher na IBM. No ano seguinte, M.M. Lehman divulgou essa metodologia em um relatório

interno para a gerência da IBM. (LARMAN; BASILI, 2003).

2.3.1.2 Aplicação na engenharia de software

No que diz respeito a um aplicativo, onde a criação do produto final é apenas uma

questão de fazer cópias, essas analogias são inválidas. Na produção deles, é provável que o

protótipo seja o produto para o futuro, e não tem um conceito semelhante ao do modelo para a

escala (BUDGEN, 2003).

Apesar de a prototipagem diferir na construção de um sistema, a razão para a constru-

ção de um permanece a mesma: protótipos são criados para explorar uma ideia de forma mais

integral do que outras maneiras (BUDGEN, 2003).

O aplicativo é aperfeiçoado gradualmente, e os requisitos são alterados com o tempo,

ficando mais nítidos com o uso. Nesse sentido, modificou-se o sistema para se adequar a eles.

19

Dessa forma, concebeu-se o protótipo e, aos poucos, moldou-se ele até se chegar à versão

final do produto (BUDGEN, 2003).

O desenvolvimento incremental é fundamentado no conceito de se elaborar uma versão

inicial, submetê-la à avaliação dos usuários e prosseguir com a criação de diversas outras até se

chegar a um sistema satisfatório. As tarefas de especificação, desenvolvimento e validação são

executadas em rotatividade, sempre com um rápido retorno entre elas. Ao criar um programa

de forma gradual, é mais econômico e prático fazer alterações no programa enquanto ele está

sendo criado (SOMMERVILLE, 2011). A Figura 1 ilustra o ciclo do desenvolvimento incremental:

Figura 1 – Ilustração do desenvolvimento incremental

Fonte: Adaptado de (SOMMERVILLE, 2011).

Cada nova versão do sistema tem uma funcionalidade importante para o cliente. As

primeiras versões, muitas vezes, apresentam a principal funcionalidade ou aquela que é mais

urgente. Ou seja, o cliente pode experimentar o sistema numa etapa preliminar do processo de

criação para verificar se oferece o que foi pedido. Em caso de discordância, apenas a funci-

onalidade desenvolvida terá que ser modificada naquele instante e, eventualmente, uma nova

característica precisará ser estabelecida para os incrementos seguintes (SOMMERVILLE, 2011;

SHERMAN, 2015).

É possível criar um sistema gradativamente e mostrá-lo para os clientes, sem precisar

efetivamente instalá-lo e colocá-lo em funcionamento no ambiente do cliente. A entrega e a im-

plantação gradativas significa que o software é utilizado em tarefas rotineiras. Isso nem sempre

é viável, pois as experiências com o aplicativo podem interferir nos procedimentos de trabalho

normais (SOMMERVILLE, 2011).

20

2.3.1.3 Entrega Incremental

Entrega incremental é uma forma de desenvolvimento de aplicações onde os usuários

podem utilizar, identificar e classificar a importância das funcionalidades de uma nova aplicação

em um ambiente operacional. A atribuição de serviços às novas funcionalidades depende da

ordem de prioridade dos serviços (SOMMERVILLE, 2011).

Primeiramente, identifica-se quais módulos têm maior relevância para o uso. Após esta-

belecer as prioridades, é possível elaborar uma série de versões do sistema que contenham um

subconjunto das funcionalidades. Dessa forma, a primeira versão já concordará com o que foi

estabelecido. Nesse período, podem surgir algumas análises, adições ou mudanças de acrés-

cimos futuros (SOMMERVILLE, 2011).

Ao finalizar esse desenvolvimento, o cliente inicia o uso das funcionalidades e, caso seja

uma modificação posterior à primeira, verifica a sua compatibilidade com o resto da aplicação.

Os clientes podem testar o aplicativo, o que os ajuda a compreender suas necessidades para

futuras melhorias (SOMMERVILLE, 2011). A Figura 2 mostra o ciclo da metodologia:

Figura 2 – Ilustração da entrega incremental

Fonte: (SOMMERVILLE, 2011).

A entrega incremental apresenta diversas vantagens (SOMMERVILLE, 2011):

• Os clientes podem usar os primeiros aprimoramentos como protótipos e obter experi-

ência, indicando seus requisitos para os aperfeiçoamentos futuros do sistema.

21

• Os clientes não precisam esperar até que todo o produto esteja finalizado para obter

benefícios dele, pois, a partir da primeira versão, já podem utilizar as funções mais

críticas do sistema.

• Se mantêm os benefícios do desenvolvimento incremental, o que deve facilitar a agre-

gação das alterações no sistema.

• Quanto mais os serviços forem adicionados e, logo após, mais integrados, mais as

funções críticas serão testadas. Isso significa que é menos provável que os clientes

encontrem defeitos no software das partes essenciais do sistema.

Contudo, suas desvantagens são (SOMMERVILLE, 2011):

• A maioria dos sistemas necessita de um grupo de funcionalidades básicas, usadas por

diferentes sessões do programa. Como os requisitos não são explicitados até que uma

versão possa ser construída, pode ser difícil identificar recursos em comum, necessá-

rios para todas as melhorias.

• O desenvolvimento iterativo também encontra aversão quando é construído com in-

tenção de substituir outro. Os usuários desejam todas as funcionalidades do sistema

anterior e, em muitos casos, não estão dispostos a testar um novo sistema que está

incompleto. Sendo assim, é difícil obter feedbacks relevantes dos mesmos.

• O processo iterativo é caracterizado pelo desenvolvimento da especificação em con-

junto com o software. Todavia, isso gera problemas com o modelo de aquisições de

diversas companhias, no qual a descrição completa do sistema é parte do acordo de

criação do aplicativo.

• Na abordagem incremental, o aplicativo não é totalmente especificado até sua ver-

são final. Isso pode exigir que clientes, como agências governamentais, façam novos

acordos para se adaptar às mudanças.

Para resolver esses problemas e obter alguns dos benefícios do desenvolvimento incre-

mental, pode-se usar um processo no qual um protótipo de sistema é criado de forma iterativa

e usado como uma plataforma para experimentos com os requisitos e projeto do sistema. Com

a experiência obtida com o protótipo, pode-se, então, chegar a um acordo em relação aos re-

quisitos finais (SOMMERVILLE, 2011).

2.3.2 Engenharia de requisitos

Sommerville (2011) explica que requisitos de sistema especificam as funções, servi-

ços e limitações de um sistema para atender às necessidades do cliente. “Esse processo de

22

identificação, análise, documentação e verificação é conhecido como engenharia de requisitos.“

(SOMMERVILLE, 2011).

Larman (2001) informa que os requisitos são as funções e condições que o sistema e

o projeto como um todo devem atender. O desafio é identificar, comunicar e documentar essas

necessidades de forma clara para o cliente e a equipe de desenvolvimento.

Ambos autores afirmam que é comum a separação dos requisitos em duas definições

generalizadas:

• Requisitos funcionais: Sommerville (2011) diz que eles descrevem os serviços que

o sistema deve oferecer, sua resposta a entradas específicas e seu comportamento

em situações particulares. Eles também podem definir o que o sistema não deve fazer.

Larman (2001) explica que eles são identificados e documentados no Modelo de Casos

de Uso e na lista de características do sistema, que faz parte do artefato Visão.

• Requisitos não-funcionais: Sommerville (2011) afirma que eles são limitações que afe-

tam o sistema inteiro, como tempo de resposta, regras de desenvolvimento e normas

a seguir. Eles diferem dos requisitos funcionais, que geralmente se aplicam a funções

ou serviços específicos do sistema. Larman (2001) expressa que eles podem ser do-

cumentados nos casos de uso relacionados ou no artefato de Especificações Suple-

mentares.

Sommerville (2011) reconhece que a distinção entre diferentes tipos de requisitos é in-

certa, ao contrário do que sugerem essas definições. Ele exemplifica com um requisito sobre

proteção, como limitar o acesso a usuários autorizados, que pode inicialmente parecer não fun-

cional. Porém, ao explorá-lo mais, é possível considera-lo como um requisito funcional, como a

implementação de recursos de autenticação.

2.3.2.1 Elicitação e análise de requisitos

Após os esclarecimentos sobre as definições de requisitos e suas classificações gerais,

é necessário ver como levantar e analisar os requisitos para o sistema. Sommerville (2011)

explica que nessa atividade, os engenheiros de software colaboram com clientes e usuários

para coletar informações sobre o escopo da aplicação, serviços necessários, desempenho e

limitações de hardware.

Sommerville (2011) acrescenta que esta fase do desenvolvimento pode incluir diversos

tipos de pessoas. Ele apresenta o conceito de um stakeholder ou parte interessada, que é

“quem tem alguma influência direta ou indireta sobre os requisitos o sistema.“ (SOMMERVILLE,

2011, p.70). Sommerville (2011) também diz que as partes interessadas pode envolver usuários

finais, membros da organização afetados pelo sistema, engenheiros de sistemas relacionados,

gerentes de negócios, especialistas de domínio e representantes sindicais.

23

Sommerville (2011) informa algumas dificuldades que é possível encontrar nesta fase

do desenvolvimento, que são elas:

• Partes interessadas geralmente não têm clareza sobre o que querem do sistema e

podem fazer pedidos inviáveis.

• Engenheiros podem ter dificuldade em entender requisitos expressos em termos espe-

cíficos do domínio do cliente.

• Diferentes partes interessadas têm requisitos distintos, e pode haver conflitos e seme-

lhanças entre eles.

• Fatores políticos, como a influência dos gerentes, podem afetar os requisitos do sis-

tema.

• O cenário econômico e empresarial é dinâmico, levando a mudanças e novos requisitos

ao longo do processo de análise.

2.3.2.2 Descoberta de requisitos

Esta é fase do desenvolvimento que é levantado o que as partes interessadas acredi-

tam ser necessário para o sistema funcionar. Ela pode decorrer de diversas maneiras, como

entrevistas, criações de cenários, observação do comportamento das partes interessadas com

outros sistemas que serão integrados ou substituídos pelo novo. Sommerville (2011) explica

essas diferentes formas, que são:

• Entrevistas: a equipe questiona as partes interessadas sobre o sistema atual e o que

será criado. Essas conversas revelam os requisitos necessários. Existem duas abor-

dagens que são as entrevistas fechadas, com perguntas predefinidas ou as entrevistas

abertas, onde a equipe explora variados tópicos para entender melhor as necessidades

das partes interessadas.

• Cenários: As pessoas costumam entender melhor exemplos práticos do que concei-

tos abstratos. Elas podem avaliar cenários de interação com um sistema, fornecendo

ideias para os engenheiros de requisitos definirem os requisitos do sistema. Cenários

ajudam a detalhar requisitos gerais através de exemplos de interações específicas.

Cada cenário foca em um conjunto limitado de interações, fornecendo informações

variadas e detalhadas sobre o sistema.

• Casos de uso: Um caso de uso nomeia a interação e identifica os atores envolvidos,

fornecendo detalhes adicionais sobre a interação com o sistema. Larman (2001) acres-

centa que eles ajudam a identificar e documentar requisitos funcionais através de nar-

rativas que mostram como o sistema atende aos objetivos das partes interessadas.

24

• Etnografia: é uma técnica onde um analista observa o ambiente de trabalho para enten-

der os processos e identificar requisitos do sistema. Ele foca nas tarefas reais e rotinas

diárias, permitindo descobrir requisitos implícitos que podem não ser capturados por

processos formais.

Diferentes fontes de requisitos podem ser vistas como perspectivas distintas do sistema,

cada uma destacando um conjunto específico de requisitos. Embora essas perspectivas te-

nham particularidades, elas frequentemente se sobrepõem e trazem requisitos comuns. Essas

perspectivas podem ser usadas para organizar a coleta e documentação dos requisitos.

2.3.2.3 Validação de requisitos

A validação de requisitos confirma se o sistema atende às reais necessidades do cliente

e identifica problemas antecipadamente para evitar custos elevados de correção mais tarde.

Sommerville afirma que ela “é importante porque erros em um documento de requisitos podem

gerar altos custos de retrabalho quando descobertos durante o desenvolvimento ou após o sis-

tema já estar em serviço.“ (SOMMERVILLE, 2011, p.76). Erros em requisitos são especialmente

caros de corrigir, pois usualmente exigem mudanças no projeto e na implementação do sistema,

além de retestes.

Sommerville (2011) descreve alguns diferentes tipos de verificações para o processo de

validação de requisitos, que são:

• Validade: Analise se as funções necessárias estão realmente refletidas nos requisitos,

considerando que diferentes partes interessadas podem ter diferentes necessidades.

• Consistência: Certifique-se de que os requisitos no documento não se contradizem.

• Completude: Verifique se o documento inclui todas as funções e restrições desejadas

pelo usuário.

• Realismo: Com base na tecnologia disponível, no orçamento e no cronograma, con-

firme se os requisitos são viáveis.

• Verificabilidade: Os requisitos devem ser claros o suficiente para permitir testes que

confirmem se o sistema atende às especificações.

É demonstrado algumas técnicas aplicáveis para certificar que os requisitos listados são

validos para sistema que está sendo criado, que incluem:

• Revisões: Uma equipe examina os requisitos em busca de erros e inconsistências.

• Prototipação: Um modelo funcional do sistema é apresentado aos usuários e clientes

para avaliar se ele atende às necessidades.

25

• Casos de Teste: Criar testes com base nos requisitos pode revelar problemas. Se for

difícil projetar um teste, provavelmente o requisito também será difícil de implementar

e deve ser revisto.

2.3.2.4 Gerenciamento de requisitos

Requisitos de software em sistemas grandes estão sempre em fluxo devido à natureza

indefinida dos problemas que tentam resolver. “Uma razão para isso é que esses sistemas geral-

mente são desenvolvidos para enfrentar os problemas ’maus’— problemas que não podem ser

completamente definidos.“ (SOMMERVILLE, 2011, p.77). À medida que as partes interessadas

ganham novas perspectivas, os requisitos precisam ser atualizados.

Uma vez que o sistema está em uso, novos requisitos surgem com base na experiência

do usuário e nas mudanças no ambiente técnico e de negócios. Isso inclui novos hardwares,

regulamentos e mudanças nas prioridades empresariais.

Normalmente, afirma Sommerville (2011), os pagadores e os usuários finais do sistema

têm requisitos diferentes, frequentemente conflitantes. “Clientes do sistema impõem requisitos

devido a restrições orçamentárias e organizacionais, os quais podem entrar em conflito com os

requisitos do usuário fina“ (SOMMERVILLE, 2011, p.78). Com o tempo, o sistema pode precisar

de ajustes para equilibrar essas necessidades.

“O gerenciamento de requisitos é o processo de compreensão e controle das mudanças

nos requisitos do sistema.“ (SOMMERVILLE, 2011, p.78). Isso envolve um processo formal que

começa durante a fase de elicitação e continua através do ciclo de vida do projeto.

2.3.3 Casos de uso

“Escrever casos de uso — histórias sobre a utilização de um sistema — é uma excelente

técnica para entender e descrever requisitos.“ (LARMAN, 2001, p.45). Casos de uso são um

roteiro de como cada requisito levantado para o sistema ocorrerá, incluindo os seus atores, seu

fluxo básico, suas extensões. Existem diferentes maneiras de representar um caso, e cada uma

delas irá possuir um nível de detalhamento.

Segundo Larman (2001), eles são um mecanismo para ajudar a manter tudo simples

e compreensível para todas as partes interessadas. Informalmente, eles são histórias de como

utilizar um sistema para atingir objetivos. Fowler (2003) também da um descrição parecida sobre

os casos de uso, ele diz que eles funcionam descrevendo as interações típicas entre os usuários

de um sistema e o próprio sistema, fornecendo uma narrativa de como um sistema é utilizado.

Sommerville (2011) diz que um caso de uso esboça as expectativas do usuário em relação a

um sistema. Cockburn (2001) explica que um caso de uso é um acordo sobre como um sistema

deve agir, envolvendo todas as partes interessadas.

26

Um caso de uso captura um contrato entre as partes interessadas
de um sistema sobre seu comportamento. O caso de uso descreve
o comportamento do sistema sob várias condições enquanto res-
ponde a uma solicitação de uma das partes interessadas, chamada
de ator principal. O ator principal inicia uma interação com o sistema
para alcançar algum objetivo. O sistema responde, protegendo os in-
teresses de todas as partes interessadas. Diferentes sequências de
comportamento, ou cenários, podem se desenrolar, dependendo das
solicitações específicas feitas e das condições que cercam essas so-
licitações. O caso de uso reúne esses diferentes cenários. (COCK-
BURN, 2001, p. 15).

Larman (2001) explica que os casos de uso são requisitos; principalmente, são requisitos

funcionais que indicam o que o sistema fará. É como uma promessa de que o sistema, seja ele

um site, aplicativo ou algo diferente, fará essas tarefas específicas. Fowler (2003) concorda

afirmando que os casos de uso são uma técnica para capturar os requisitos funcionais de um

sistema.

2.3.3.1 História

Larman (2001) conta que foi Ivar Jacobson que introduziu o conceito de casos de uso

para descrever requisitos funcionais em 1986 e teve grande impacto devido à simplicidade e

utilidade da ideia, e conclui que Alistair Cockburn aprofundou o tema, fornecendo um guia com-

pleto sobre como escrever casos de uso eficazes, iniciando seu trabalho em 1992.

Fowler (2003) concorda com Larman (2001), dizendo que Ivar Jacobson originalmente

popularizou os casos de uso, porém o livro de Cockburn se tornou o livro padrão sobre o as-

sunto.

Por fim Cockburn (2001) traz uma visão de quem presenciou a criação, informando que

Ivar Jacobson inventou casos de uso no final dos anos 1960 enquanto trabalhava em sistemas

de telefonia na Ericsson. Duas décadas depois, Jacobson os apresentou à comunidade de pro-

gramação orientada a objetos, onde foram reconhecidos por preencher uma lacuna significativa

no processo de desenvolvimento.

2.3.3.2 Partes do corpo de um caso de uso

Existem diversos componentes que é possível acrescentar em um caso de uso, sendo

que alguns tem prioridade de definição maior do que os outros. Larman (2001) reformula as

partes que foram apresentadas por Cockburn (2001) na seguinte forma;

• Atores: Podem ser qualquer entidade com comportamento, incluindo o próprio sistema

em discussão, quando ele interage com outros sistemas. Atores têm objetivos e utili-

27

zam aplicativos para alcançá-los. Eles podem ser pessoas, organizações, softwares ou

máquinas.

• Ator principal: A pessoa ou sistema que inicia a interação para atingir um objetivo.

• Lista de Partes Interessadas e Interesses: Um rol de quem se importa com o compor-

tamento do sistema e o que eles querem dele.

• Cenário de Sucesso Principal: O fluxo típico que atende às necessidades das partes

interessadas, geralmente sem desvios condicionais.

• Extensões: Outros cenários possíveis, incluindo sucesso e falha.

• Pré-condições: Condições que já devem ser verdadeiras antes de começar o cenário.

• Garantia de Sucesso: O que precisa ser verdadeiro quando o caso de uso é comple-

tado com sucesso, atendendo a todos os interessados.

• Requisitos Especiais: Qualquer requisito não funcional ou restrição específica a um

caso de uso, como desempenho ou confiabilidade.

• Frequência de ocorrência: Intervalo de tempo em que o processo será repetido.

• Lista de Variações de Tecnologia e Dados: Notas sobre diferentes maneiras técnicas

de fazer algo, mas sem mudar o objetivo.

2.3.3.3 Formatos de casos de uso

“Casos de uso são escritos em diferentes formatos, dependendo da necessidade.“ (LAR-

MAN, 2001). Larman (2001) e Cockburn (2001) explicam que a escolha de como os casos de

usos serão escritos depende de qual é o objetivo deles em relação a apresentação do projeto.

Larman conclui que o essencial é escrever os detalhes do cenário de sucesso principal e suas

extensões, de alguma forma. Aqui estão as formas descritas por Cockburn (2001) e por Larman

(2001):

• Formato completamente vestido: é uma forma detalhada de apresentar casos de uso.

Ele utiliza uma única coluna de texto, sem tabelas, e lista os passos em uma sequência

numerada. Esse formato evita o uso de condicionais como “se“ (“if statements“). Além

disso, na seção de extensões, utiliza uma convenção de numeração que combina dí-

gitos e letras para identificar sub passos ou alternativas (por exemplo, 2a, 2a1, 2a2, e

assim por diante).

• Forma casual: formato de parágrafo informal. O primeiro parágrafo foca no cenário de

sucesso principal e os próximos parágrafos abordam extensões.

28

• Tabela de uma coluna: é o formato completamente vestido, porém inserida em uma

tabela.

• Tabela de duas colunas: Rebecca Wirfs-Brock criou o conceito de “conversação“, que

se destaca visualmente pelo uso de duas colunas. As ações do ator principal ficam na

coluna da esquerda e as do sistema na da direita. Esse formato é usado para preparar

o design da interface do usuário, podendo conter mais detalhes sobre os movimentos

do usuário.

• Estilo RUP: O Processo Unificado Racional utiliza um modelo bastante similar ao for-

mato completamente vestido. Numerar as etapas é opcional. As extensões recebem

suas próprias seções com títulos e são chamadas de fluxos alternativos.

• O diagrama de caso de uso UML: O diagrama de caso de uso, composto por elipses,

setas e figuras de pauzinho, não é uma notação para descrever casos de uso. As

elipses e setas mostram a organização e decomposição dos casos de uso, e não o seu

conteúdo. Segundo Cockburn (2001), é possível decompor os casos de uso utilizando

o diagrama, porém o diagrama de elipse está faltando informações essenciais, como

qual ator está realizando cada etapa e notas sobre a ordem das etapas.

Apesar de não recomendarem nenhum dos formatos e afirmarem que a escolha de um

deles depende do nível de detalhamento desejado, ambos autores demonstraram uma prefe-

rência em relação ao formato de completamente vestido. Cockburn (2001) informa que a maioria

dos exemplos que ele descreveu em seu livro são utilizando este formato.

Essa é minha prática, não uma recomendação. Por alguns anos, eu
usei o formato de duas colunas devido à sua clara separação visual
na conversa. No entanto, eu voltei para um estilo de uma coluna,
pois é mais compacto e fácil de formatar, e o pequeno valor da con-
versa visualmente separada não compensa esses benefícios para
mim. Acho que ainda é simples identificar visualmente as diferentes
partes na conversa (Cliente, Sistema, ...) se cada parte e as respos-
tas do Sistema geralmente são alocadas em seus próprios passos.
(LARMAN, 2001, p. 54)

2.3.4 Testes

A etapa de testes no processo de desenvolvimento de um sistema consiste em vali-

dar que as funcionalidades implementadas mantenham os resultados esperados ao receberem

diversos tipos de entradas. Sommerville (2011) diz que o teste serve para confirmar que um

programa faz o que deve e identificar problemas antes de usá-lo. Nele, o software é executado

com dados fictícios, e os resultados são examinados em busca de erros, anomalias ou questões

relacionadas ao funcionamento do programa.

29

Sommerville (2011) apresenta a seguinte situação sobre a Figura 3, em um cenário hi-

potético, sreá considerado o sistema sob teste como uma caixa-preta. Este sistema é submetido

a entradas de um conjunto predefinido e, em resposta, gera saídas correspondentes. Algumas

dessas saídas podem ser incorretas e são classificadas no conjunto denominado Oe, resultante

das entradas do conjunto Ie. A ênfase primordial nos testes de detecção de falhas reside na

identificação das entradas presentes no conjunto Ie, uma vez que essas evidenciam problemas

inerentes ao sistema. Em contrapartida, os testes de validação compreendem a utilização de

entradas adequadas que não pertencem ao conjunto Ie, com o intuito de estimular o sistema a

produzir resultados corretos.

Figura 3 – Ilustração de entrada-saída de teste de programa

Fonte: (SOMMERVILLE, 2011).

Sommerville (2011) diz que os dois objetivos do processo de teste são:

1. Demonstrar tanto ao desenvolvedor quanto ao cliente que o software está em confor-

midade com os requisitos estabelecidos. No caso de softwares personalizados, isso

implica na realização de, pelo menos, um teste para cada requisito mencionado no do-

cumento de requisitos. No contexto de softwares genéricos, a abordagem implica na

realização de testes abrangendo todas as características do sistema, incluindo suas

diversas combinações, que serão integradas na versão final do produto.

2. Concentrar-se na identificação de situações em que o software apresenta comporta-

mentos incorretos, indesejáveis ou discrepantes em relação às especificações. Tais

comportamentos decorrem de defeitos no software. Os testes voltados à detecção de

defeitos têm como principal foco a eliminação de comportamentos indesejáveis no sis-

tema, como falhas críticas, interações não desejadas com outros sistemas, processa-

mento inadequado e corrupção de dados.

Sommerville (2011) comenta que o primeiro objetivo orienta a realização de testes de

validação, nos quais se espera que o sistema funcione corretamente quando submetido a um

conjunto específico de casos de teste que representam o uso típico previsto para o sistema.

30

Já o segundo objetivo direciona os esforços para os testes de defeitos, nos quais os casos

de teste são meticulosamente concebidos para expor eventuais defeitos no software. Segundo

Sommerville (2011) , é importante ressaltar que não há uma fronteira rígida entre essas duas

abordagens de teste. Durante os testes de validação, é possível identificar defeitos no sistema,

enquanto durante os testes de defeitos, alguns casos de teste podem evidenciar que o programa

está em conformidade com os requisitos estabelecidos.

Sommerville (2011) declara que os testes não garantem que o software seja perfeito ou

que funcione exatamente como esperado em todas as situações. Sempre existe a possibilidade

de que um teste omitido possa revelar problemas adicionais no sistema. Ele também cita Dijk-

tra et al. que declara que “Os testes podem mostrar apenas a presença de erros, e não sua

ausência.“ (1972 apud SOMMERVILLE, 2011, p. 145).

Sommerville (2011) categoriza os tipos de testes por períodos que um sistema de apli-

cativos comercial passa por, os três deles são:

• Testes durante o desenvolvimento, nos quais o sistema é avaliado enquanto está sendo

construído, com o propósito de identificar erros e defeitos. Nessa fase, designers de

sistemas e programadores podem estar envolvidos no processo de teste.

• Testes de liberação, nos quais uma equipe de teste independente avalia uma versão

completa do sistema antes de ser disponibilizada aos usuários. O objetivo dos tes-

tes de liberação é garantir que o sistema esteja em conformidade com os requisitos

estabelecidos pelos interessados no sistema.

• Testes de usuário, nos quais os usuários finais ou potenciais testam o sistema em seus

próprios ambientes. Em produtos de software, o “usuário“ pode ser um grupo de mar-

keting interno, responsável por decidir se o software pode ser comercializado, lançado

e vendido. Os testes de aceitação são uma forma específica de teste de usuário, no

qual o cliente avalia formalmente o sistema para decidir se ele deve ser aceito pelo

fornecedor do sistema ou se requer desenvolvimentos adicionais.

Sommerville (2011) consta que na prática, o processo de teste geralmente envolve uma

combinação de testes manuais e automatizados. Nos testes manuais, um testador executa o

programa com um conjunto de dados de teste e compara os resultados com as expectativas,

registrando e reportando quaisquer discrepâncias aos desenvolvedores do programa. Já nos

testes automatizados, os testes são codificados em um programa que é executado sempre que

o sistema em desenvolvimento é testado. Essa abordagem tende a ser mais eficiente do que

os testes manuais, especialmente em casos de testes de regressão, nos quais testes anteriores

são reexecutados para verificar se as alterações no programa não introduziram novos defeitos.

Sobre os testes de desenvolvimento Sommerville (2011) diz que eles englobam todas

as atividades de teste conduzidas pela equipe responsável pelo desenvolvimento do sistema.

31

Geralmente, o testador de software é o próprio programador que criou o software, embora essa

não seja uma regra inflexível.

Sommerville (2011) conta que durante o processo de desenvolvimento, os testes podem

ser realizados em três níveis de granularidade distintos:

• Teste unitário: Nesse nível, as unidades individuais do programa, como classes de

objetos ou métodos, são avaliadas separadamente. Os testes unitários têm como foco

principal verificar a funcionalidade das unidades em questão.

• Teste de componentes: Nesse estágio, diversas unidades individuais são integradas

para formar componentes compostos. Os testes de componentes concentram-se na

avaliação das interfaces entre esses componentes.

• Teste de sistema: No nível de teste de sistema, ocorre a integração de algumas ou

todas as partes de um sistema, e o sistema é avaliado como um todo. O objetivo

principal do teste de sistema é verificar as interações entre os diversos componentes

do sistema.

2.3.4.1 Testes unitários

Sommerville (2011) explica sobre que testes unitários é o processo de testar componen-

tes do sistema individualmente, onde as funções e métodos são os componentes mais simples

do programa. Explica ele também que “os testes devem ser chamadas para essas rotinas com

parâmetros de entrada diferentes“ (SOMMERVILLE, 2011).

Sommerville (2011) consta que ao realizar testes em classes de objetos, é fundamental

projetar os casos de teste de modo a abranger todas as características do objeto. Segundo ele

isso implica nas seguintes ações:

• Testar todas as operações associadas ao objeto: Certifique-se de que todas as opera-

ções ou métodos vinculados ao objeto sejam testados.

• Definir e verificar o valor de todos os atributos associados ao objeto: Verifique se todos

os atributos do objeto são definidos e verificados adequadamente nos casos de teste.

• Colocar o objeto em todos os estados possíveis: Isso requer a simulação de todos os

eventos que podem causar mudanças de estado no objeto.

Sommerville (2011) declara que é importante definir casos de teste para cada um dos

métodos associados ao objeto. O ideal é testar os métodos de forma isolada, embora em de-

terminadas situações possa ser necessário criar sequências de teste específicas. Sommerville

(2011) diz que não é suficiente testar uma operação apenas na classe onde ela é definida e

presumir que funcionará corretamente nas subclasses que herdam a operação. A operação

32

herdada pode assumir premissas em relação a outras operações e atributos que podem não

ser válidos em algumas subclasses que herdam a operação.

Segundo Sommerville (2011) em testes unitários automatizados, é comum utilizar um

framework de automação de testes para escrever e executar testes em seu programa. Esses

frameworks fornecem classes de teste genéricas que podem ser estendidas para criar casos de

teste específicos. Eles são capazes de executar todos os testes implementados e reportar os

resultados, frequentemente por meio de uma interface gráfica.

Sommerville (2011) diz que um teste automatizado é composto por três partes:

1. Parte de configuração: Nesta etapa, o sistema é inicializado com o caso de teste, ou

seja, são definidas as entradas e as saídas esperadas.

2. Parte de chamada: Aqui, o objeto ou método a ser testado é invocado.

3. Parte de afirmação: Nesta fase, o resultado da chamada é comparado com o resultado

esperado. Se a afirmação for verdadeira, o teste é considerado bem-sucedido; caso

contrário, ele é considerado falho.

Em algumas situações, o objeto sob teste pode depender de outros objetos que ainda

não foram implementados ou que podem atrasar o processo de teste, como no caso de cha-

madas a um banco de dados que envolvem processos demorados. Nestas circunstâncias, é

possível optar por utilizar um “mock objects.“ Sommerville (2011) explica que mock objects são

objetos que possuem a mesma interface que os objetos externos, mas são usados para simular

seu funcionamento. Por exemplo, um mock objects que simula um banco de dados pode conter

apenas alguns dados organizados em uma estrutura simples, permitindo acesso rápido, sem a

sobrecarga de acessar um banco de dados real. Além disso, mock objects podem ser usados

para simular situações anormais ou eventos raros.

Sommerville (2011) explica que os testes são um processo custoso e demorado, por

isso é crucial selecionar cuidadosamente os casos de teste unitário. Segundo ele a efetividade

nesse contexto implica em duas considerações:

1. Os casos de teste devem demonstrar que, quando o componente é utilizado de acordo

com as expectativas, ele desempenha suas funções conforme especificado.

2. Caso haja defeitos no componente, esses problemas devem ser identificados pelos

casos de teste.

Segundo Sommerville (2011) é importante criar dois tipos de casos de teste. O primeiro

tipo reflete o comportamento normal do programa e tem como objetivo verificar o funcionamento

adequado do componente. O segundo tipo de caso de teste baseia-se em cenários de teste

que abordam os problemas mais comuns que surgem na experiência prática. Esses casos de

33

teste utilizam entradas anormais para verificar se o componente lida corretamente com essas

situações e não falha.

Sommerville (2011) demonstra duas estratégias que podem ser eficazes na seleção de

casos de teste:

• Teste de Partição: Nessa abordagem, os grupos de entradas que compartilham carac-

terísticas semelhantes e devem ser tratados de maneira idêntica são identificados. A

escolha dos testes é feita dentro de cada um desses grupos.

• Testes Baseados em Diretrizes: Essa estratégia se baseia em diretrizes de teste que

refletem experiências anteriores sobre os tipos comuns de erros cometidos pelos de-

senvolvedores de componentes durante o desenvolvimento.

Frequentemente, os dados de entrada e os resultados de saída de um software podem

ser classificados em diferentes classes com características em comum, como números positi-

vos, números negativos ou seleções em um menu. Sommerville (2011) explica que programas

tendem a se comportar de maneira consistente para todos os membros de uma mesma classe.

Portanto, ao testar um programa que envolve cálculos e requer dois números positivos, diz Som-

merville (2011) que é razoável esperar que o programa funcione de forma similar para todos os

números positivos.

2.4 Ferramentas de Desenvolvimento Web

Há diversas opções de linguagens de programação e frameworks para serem escolhidos

quando se pensa em criar um servidor para uma aplicação de conversas que usa uma API para

comunicação (SHUERMANS; VOSKOGLOU, 2019; OVERFLOW, 2022). Algumas das opções

de linguagens disponíveis são:

• Node.js. É um executor de código de JavaScript usado na criação de servidores. Ele

provê diversas bibliotecas e ferramentas externas para a construção de uma API, como

Express e Socket.IO. Node.js é especialmente adequado para aplicações em tempo

real, como aplicativos de conversação, devido à sua arquitetura baseada em eventos.

• Python. É uma linguagem flexível que pode ser usada para diversos fins. Existem

diversos frameworks web em Python que permitem a criação de APIs, como Flask

e Django. O Python também tem várias bibliotecas para trabalhar com APIs, como

requests e aiohttp.

• Ruby on Rails. É um framework web usado para a criação de aplicações web. Ele

oferece diversos recursos úteis para a criação de APIs, como o ActionCable e o Ac-

tiveModelSerializers. Ele é eficiente para o desenvolvimento de aplicações em pouco

tempo.

34

• Java. É uma linguagem de programação popular que é usada para a criação de apli-

cativos corporativos. Existem diversos frameworks que podem construir APIs, como

Spring e Jersey. Ela é adequada para criar aplicações escaláveis e robustas.

• Go. É uma linguagem de programação recente e projetada para a criação de apli-

cativos de alto desempenho. Suporta a concorrência de forma nativa, o que a torna

adequada para a construção de aplicações em tempo real, como um aplicativo de con-

versas. Além disso, há diversos frameworks que podem ser usados para criar uma API,

como o Gin e o Echo.

Além disso, existem diversas opções para escolher como front-end. Alguns exemplos de

escolhas populares são:

• React. Ele é um framework JavaScript usado para criar interfaces para usuários, sendo

conhecido pelo seu desempenho e flexibilidade. O React dispõe de muitas bibliotecas

e ferramentas para facilitar a criação de interfaces de usuário complexas e interativas,

incluindo um DOM virtual, componentes, e ganchos. Ele é também leve, que significa

que tem uma pequena pegada nos aplicativos e pode ser integrado facilmente com

projetos já existentes. Pode ser usado com qualquer plataforma de servidor para criar

uma aplicação de conversas que se comunica por API.

• Angular. É um framework JavaScript usado para criar aplicativos web. Ele fornece

ferramentas úteis para a criação de interfaces complexas, como o vínculo de dados,

a injeção de dependências e a programação reativa. Além disso, o framework tam-

bém tem suporte para comunicação por API nativo. O framework é conhecido como

completo, o que significa que ele tem tudo o que é preciso para criar uma aplicação

inteira, como roteamento, formulários e testes. Ele foi criado e vem sendo mantido pelo

Google, e possui uma grande base de programadores que o ajudam a evoluir.

• Vue.js. É um framework JavaScript usado para criar interfaces, sendo desenvolvido

para ser simples e fácil de usar, permitindo que seja usado até por desenvolvedores

novos na área de interfaces. Vue.js, tal como os dois anteriores, tem várias característi-

cas que facilitam a elaboração de interfaces, como reatividade, diretrizes e componen-

tes. Assim como o React, ele é leve, que significa que possui uma pequena pegada

nos aplicativos e pode ser facilmente integrado a projetos já existentes.

• Flutter, É um framework para a criação de aplicativos para dispositivos móveis. A lin-

guagem de programação Dart é utilizada e fornece uma série de widgets que permitem

a criação de interfaces bonitas e responsivas. O framework também oferece suporte à

comunicação por API nativo.

• Ionic. É um framework para criação de aplicativos móveis híbridos. Ele usa tecnologias

web, como HTML, CSS e JavaScript para criar aplicações que funcionam tanto em iOS

35

quanto Android. O Ionic oferece diversas ferramentas e componentes úteis para criar

uma aplicação de conversas, como componentes de UI e plugins.

Um conceito utilizado nas descrições anteriores de dois frameworks e precisa de mais

explicações é o de uma pequena pegada. Quando um framework tem essa característica, sig-

nifica que tem uma pequena quantidade de código e precisa de menos recursos para rodar do

que o padrão. Isso traz alguns benefícios, como a rapidez e a eficiência, devidos à menor quan-

tidade de código a ser executado, além de ser mais fácil de usar devido à menor quantidade

de funcionalidades para aprender. Em suma, uma pegada reduzida significa uma diminuição do

quanto de memória e poder de processamento é necessário para rodar o framework, o que pode

ser relevante em ambientes que requerem uma restrição desses recursos (PCMAG, 2023a).

Resumidamente, cada tipo de linguagem ou framework tem as suas qualidades e fra-

quezas. A escolha ideal de um deles, tanto para um servidor quanto para a interface do usuário,

para um aplicativo de conversas, dependerá dos requisitos específicos, habilidades e preferên-

cias do usuário.

Para este trabalho, foi escolhido o Node.js para a criação do servidor, e o Vue.js para

a interface do usuário. A seleção foi baseada na familiaridade já existente com ambas as tec-

nologias, com a linguagem de programação JavaScript, e na facilidade de adição de recursos

externos que o gerenciador de pacotes NPM, do Node.js, oferece.

2.4.1 Node.js(v18.16.0) e Express(v4.17.3)

JavaScript é uma linguagem de programação que é leve, interpretada ou compilada

no momento (MDN, 2023b). Ela tem funções de primeira-classe, o que significa que elas são

tratadas da mesma forma que qualquer outra variável (MDN, 2023c). O HTML é usado para

armazenar o conteúdo e o formato de uma página da Internet. O CSS define a formatação e a

aparência. O JavaScript é usado para tornar uma página web mais dinâmica e criar aplicações

web mais complexas (MDN, 2023d).

Embora seja mais conhecida pelo seu uso em páginas da Internet, com o auxílio de

ferramentas como o Node.js, Apache CouchDB e Adobe Acrobat, ela pode ser usada fora do

ambiente de um navegador (MDN, 2023b).

Como executor de código de JavaScript assíncrono e direcionado a eventos, Node.js

foi criado no V8 JavaScript engine (NODE.JS, 2023a), para criar aplicações que podem ser

escaláveis na rede (NODE.JS, 2023b).

Node.js tem se tornado cada vez mais popular nos últimos anos como a escolha prefe-

rida para a criação de aplicações web em tempo-real e APIs, devido ao seu foco em eventos

e ao seu modelo de não bloquear as entradas e saídas (MDN, 2023b). Isso possibilita que

os desenvolvedores possam administrar diversos acessos de clientes simultaneamente, sem

dificultar a execução do código.

36

Listagem 1 – Exemplo de função middleware

1 app . use ((er r , req , res , next) => {
2 console . error (e r r . s tack)
3 res . status (5 0 0) . send (’Something broke!’)
4 })

Fonte: Autoria própria (2023).

Ele apresenta uma grande variedade de bibliotecas construídas e módulos que podem

ser facilmente integrados em uma aplicação web para lidar com diferentes tarefas, como um

sistema de entrada e saída de arquivos, gerenciamento de rede, criptografia, e transmissão

de dados. Além disso, disponibiliza um gerenciador de pacote chamado NPM (Node Package

Manager), que possibilita aos programadores instalar, administrar e compartilhar com facilidade

bibliotecas e módulos de outros criadores.

Ele é uma opção primorosa para a elaboração de microsserviços e aplicações server-

less. O programador tem a opção de criar e implantar componentes pequenos, modulares e

independentes que possam ser mantidos e escalados.

A tecnologia oferece muitas vantagens para um desenvolvedor de back-end. Sua capa-

cidade de lidar com aplicações em tempo real e de grande escala, aliada à sua flexibilidade,

escalabilidade e facilidade de integração com outras tecnologias, tornam-no uma opção popular

na construção de aplicativos web modernos.

Como comentado anteriormente, no conjunto de ferramentas do Node, existe o NPM

que permite a fácil integração de módulos externos na aplicação.

Express provê uma série de características robustas para aplicações web e móveis (EX-

PRESS.JS, 2023b). Ele permite que sejam criados administradores para requisições HTTP com

diferentes tipos e rotas. Ele está integrado a motores de renderização para gerar respostas ao

inserir dados em modelos (MDN, 2023a).

Além disso, é possível adicionar configurações comuns nos aplicativos web, como a

porta usada para se conectar e a localização dos modelos usados para renderizar as respos-

tas. Adicionalmente é possível adicionar middleware extra de processamento de requisição em

qualquer ponto na pipeline da requisição (MDN, 2023a).

Funções de middleware são as que estão entre os objetos das requisições e respostas

em uma aplicação que usa o protocolo HTTP para se comunicar. Podem ser empregadas para

diferentes finalidades, tais como elaboração de relatórios, autenticação, tratamento de erros,

dentre outras (EXPRESS.JS, 2023a). Na Listagem 1, tem-se um exemplo de como uma função

middleware pode ser utilizada para tratamento de erros.

Outra vantagem do Express é a sua flexibilidade, já que ele não impõe nenhuma regra

ou convenção, permitindo aos desenvolvedores estruturar suas aplicações conforme as suas

necessidades. Essa característica também torna a integração com outras tecnologias e servi-

ços mais simples, como bancos de dados, sistemas de armazenamento temporário e filas de

mensagens.

37

Listagem 2 – Exemplo de código JS no Vue.js

1 import { createApp } from ’vue’
2
3 createApp ({
4 data () {
5 return {
6 count : 0
7 }
8 }
9 }) . mount (’#app’)

Fonte: (VUE.JS GUIDE, 2023a).

Listagem 3 – Exemplo de código HTML no Vue.js

1 <div id = ‘ ‘ app ‘ ‘ >
2 <button @click = ‘ ‘ count ++ ‘ ‘>
3 Count i s : { { count } }
4 < / button>
5 < / div>

Fonte: (VUE.JS GUIDE, 2023a).

2.4.2 Vue.js(3.2.25)

Vue é um framework JavaScript para construir interfaces de usuários. Com base nos

padrões HTML, CSS e JavaScript, ele cria um modelo de programação declarativo e baseado

em componente que ajuda a desenvolver as interfaces de maneira eficiente, sejam elas simples

ou complexas (VUE.JS GUIDE, 2023a).

Em seguida, as duas funcionalidades fundamentais do Vue (VUE.JS GUIDE, 2023a):

• Renderização declarativa: Vue estende o HTML padrão com uma sintaxe modelo que

permite descrever de forma explícita a saída do HTML conforme o estado do JavaScript

(VUE.JS GUIDE, 2023a).

• Reatividade: Ele localiza automaticamente as alterações no estado do JavaScript e

atualiza o DOM de forma eficiente quando elas ocorrem (VUE.JS GUIDE, 2023a).

Esse é um framework e um sistema que contém a maioria das funcionalidades neces-

sárias para um desenvolvimento de front-ends. Contudo, a Internet é bastante diversa, e as

coisas criadas para ela podem variar muito em termos de tamanho e forma. Pensando nisso,

Vue foi desenvolvido para ser flexível e incrementalmente adaptável (VUE.JS GUIDE, 2023a).

Dependendo do caso de uso, Vue pode ser usado de diversas maneiras:

• Melhoramento do HTML estático sem uma etapa de construção.

• Incorporação de componentes em qualquer página;

38

Listagem 4 – Exemplo de um SFC no Vue.js

1 < s c r i p t >
2 export defaul t {
3 data () {
4 return {
5 count : 0
6 }
7 }
8 }
9 </ s c r i p t >

10
11 <template >
12 <but ton @click = ‘ ‘ count ++ ‘ ‘ > Count i s : { { count } } < / but ton >
13 </ template >
14
15 < s t y l e scoped>
16 but ton {
17 fon t −weight : bold ;
18 }
19 </ s t y l e >

Fonte: (VUE.JS GUIDE, 2023a).

• Criação de aplicação de página única;

• Renderização no lado do servidor;

• Geração de sites estáticos;

• Geraçao de aplicativos para computadores desktop, móveis, WebGL, e até terminais.

Apesar da flexibilidade, todos esses casos de uso compartilham o principal conheci-

mento de como o Vue funciona. Mesmo para um iniciante, o conhecimento adquirido ao longo

do caminho continuará a ser útil em objetivos futuros mais ambiciosos.

Se o desenvolvedor for um profissional experiente, pode escolher a forma mais ade-

quada de aproveitar o Vue, conforme os problemas que está tentando resolver, enquanto man-

tendo a mesma produtividade. Por isso, é chamado de framework progressivo, pois ele é um fra-

mework que pode crescer com o desenvolvedor e adequar-se às suas necessidades (VUE.JS

GUIDE, 2023a).

Na maioria dos projetos Vue, são construídos componentes utilizando-se um formato de

arquivo similar ao HTML, chamado de Componente de arquivo único (Single-File Component

– SFC). Como o nome sugere, ele encapsula a lógica do componente (JavaScript), o formato

(HTML), e os estilos (CSS) em um único arquivo. SFC é uma das funcionalidades que definem

o Vue e é a maneira recomendada para criar componente Vue (se for possível garantir uma

configuração de construção) (VUE.JS GUIDE, 2023a). A Listagem 4 apresenta um exemplo de

um arquivo escrito no formato de SFC:

39

Listagem 5 – Exemplo da Options API

1 < s c r i p t >
2 export defaul t {
3 // Propriedades retornadas do data() se tornam reativas
4 // e sao expostas pelo ‘this‘.
5 data () {
6 return {
7 count : 0
8 }
9 } ,

10
11 // Methods sao funcoes que mutam os estados e ativam atualizacoes.
12 // Eles pode ser vinculados a listeners no formato.
13 methods : {
14 increment () {
15 th is . count++
16 }
17 } ,
18
19 // Ganchos do tempo de vida sao chamados em
20 // diferentes estagios de um componente.
21 // Essa funcao eh chamada quando um componente eh montado.
22 mounted () {
23 console . log (‘ The i n i t i a l count i s $ { th is . count } . ‘)
24 }
25 }
26 </ s c r i p t >
27
28 <template >
29 <but ton @click = ‘ ‘ increment ‘ ‘ > Count i s : { { count } } < / but ton >
30 </ template >

Fonte: (VUE.JS GUIDE, 2023a).

Os componentes podem ser criados usando dois estilos de APIs diferentes: a API Opti-

ons e a API Composition (VUE.JS GUIDE, 2023a).

• Com a API Options, estabele-se a lógica do componente usando um objeto de con-

figurações como “data“, “methods“ e “mounted“. Propriedades definidas por opções

são apresentadas pelo “this“ nas funções, apontando para a instância do componente

(VUE.JS GUIDE, 2023a).

• A API Composition define a lógica do componente usando funções da API importadas.

Em SFCs, esse estilo é típico quando se usa o atributo <script setup>. O atributo setup

que indica ao Vue realizar transformações em tempo de compilação que permitem

utilizar o estilo com menos código padronizado. As importações, variáveis e funções

declaradas no <script setup> são utilizáveis diretamente no formato (VUE.JS GUIDE,

2023a).

40

Listagem 6 – Exemplo da Composition API

1 < s c r i p t setup >
2 import { re f , onMounted } from ’vue’
3
4 // estado reativo
5 const count = r e f (0)
6
7 // funcoes que mutam os estados e ativam atualizacoes.
8 function increment () {
9 count . value++

10 }
11
12 // Ganchos de ciclo de vida do componente
13 onMounted (() => {
14 console . log (‘ The i n i t i a l count i s $ { count . value } . ‘)
15 })
16 </ s c r i p t >
17
18 <template >
19 <but ton @click = ‘ ‘ increment ‘ ‘ > Count i s : { { count } } < / but ton >
20 </ template >

Fonte: (VUE.JS GUIDE, 2023a).

Ambas as APIs, Options e Composition, são baseadas no mesmo sistema e comparti-

lham seus princípios básicos. A API Options é, na verdade, construída sobre a API Composition.

Isso as torna capazes de lidar com casos comuns (VUE.JS GUIDE, 2023a).

A API Options está centrada no conceito de uma instância do componente, o que, geral-

mente, se adéqua melhor a um modelo mental de classes para usuários que vem do modelo de

linguagem de programação orientada a objetos. Além disso, ela é mais fácil de ser compreen-

dida por iniciantes, ao evitar os detalhes de reatividade e dificulta a divisão do código em grupos

de opções (VUE.JS GUIDE, 2023a). A Listagem 5 demonstra um exemplo da API Options.

A API Composition é composta pela declaração de variáveis que possuem um estado

reativo em um corpo de uma função e um estado composto de múltiplas funções que, juntas,

cuidam da complexidade. É um formato mais aberto e requer um entendimento de como a rea-

tividade funciona no Vue para ser usado eficientemente. A flexibilidade do componente, por sua

vez, permite criar padrões mais poderosos para organizar e reutilizar a lógica do componente

(VUE.JS GUIDE, 2023a). A Listagem 6 demonstra um exemplo da API Composition.

Algumas recomendações para se escolher entre elas:

• Para fins de aprendizado, deve-se escolher o estilo que parece mais fácil de compre-

ender. A maioria dos conceitos principais é, novamente, compartilhada entre os dois

estilos, sendo assim, sempre é possível escolher outro estilo depois (VUE.JS GUIDE,

2023a).

• Para uso em produção

41

– Se não são usadas ferramentas de construção ou pretende-se usar o Vue so-

mente em ambientes de pouca complexidade, deve-se escolher a API Options

(VUE.JS GUIDE, 2023a).

– Se pretende-se criar aplicativos inteiros usando Vue, deve-se utilizar a API

Composition com o SFC (VUE.JS GUIDE, 2023a).

Outro conceito relevante do Vue é o ciclo de vida dos componentes. Cada um deles

segue uma série de etapas para iniciar quando são criados, como, por exemplo, configurar

um observador de dados, compilar o formato, montar a instância para o DOM, ou atualizar o

DOM quando os dados mudam. Durante essas etapas, ele também executa funções chamadas

de ganchos de ciclo de vida, que permitem aos usuários adicionar seus próprios códigos em

determinados estágios (VUE.JS GUIDE, 2023b). Na Figura 4 pode-se ver um ciclo de vida.

42

Figura 4 – Ilustração do ciclo de vida de um componente

Fonte: (VUE.JS GUIDE, 2023b).

43

3 DESENVOLVIMENTO

Neste capítulo, será detalhado o processo de desenvolvimento do aplicativo. Embora te-

nha sido adotado o modelo de desenvolvimento e entrega incremental, optou-se por apresentar

o processo como se tivesse sido realizado no modelo cascata. Essa escolha se dá pelo fato

de que a estrutura linear e sequencial do modelo cascata pode proporcionar uma compreensão

mais clara e organizada do passo a passo envolvido na criação do sistema.

3.1 Levantamento de Requisitos

A fase de levantamento de requisitos tem como função compreender e documentar as

necessidades e restrições das partes interessadas, compostas pelo time de suporte e o tech-

lead. O objetivo é garantir a elaboração de um sistema que esteja alinhado e atenda a essas

especificações.

3.1.1 Identificação das Partes Interessadas e Metodologia

Identificado-se que as partes interessadas seriam os times de suporte ao cliente. O

método de chuva de ideias, que consiste em coletar ideias de um grupo direcionado, foi usado

para explorar os potenciais requisitos.

As sessões foram conduzidas por uma equipe composta pelo desenvolvedor, o tech-

lead, o gerente do time de suporte, e o analista de suporte com mais tempo de experiência

no time. A equipe realizou diversas reuniões para conduzir uma chuva de ideias focada em

melhorar o processo de atendimento aos clientes pelo WhatsApp. Durante essas sessões, o

grupo foi incentivado a gerar ideias criativas, mantendo-se alinhado com o objetivo principal

do projeto. Foram estabelecidos critérios claros para a seleção de requisitos, garantindo que

qualquer ideia que ampliasse excessivamente o escopo ou se desviasse do princípio escolhido

fosse desconsiderada, mantendo o foco no objetivo principal.

3.1.2 Lista de Requisitos

Será apresentada a primeira iteração da lista desenvolvida com as ideias coletadas e

uma pequena descrição dela:

• Sistema de Atendimentos: Atribuir, rastrear e gerenciar conversas de clientes garan-

tindo que nenhuma seja ignorada e que sejam atendidas prontamente.

• Análise de Desempenho: Gerar relatórios sobre membros individuais da equipe re-

ferentes ao tempo de resposta, tempo de resolução de atendimentos e feedback do

44

cliente. Analisar os períodos de pico das conversas dos clientes para otimizar a aloca-

ção de pessoal.

• Auto-Atribuição: Distribuir automaticamente as conversas recebidas para os mem-

bros da equipe disponíveis com base em sua carga de trabalho atual, especialização

ou desempenho anterior.

• Integração com Base de Conhecimento: Equipar os membros da equipe com uma

base de conhecimento constantemente atualizada para responder rapidamente a con-

versas comuns. Permitir que os membros da equipe contribuam e aprimorem esta base

ao longo do tempo.

• Módulos de Treinamento: Implementar módulos de treinamento no software para in-

tegração de novos membros da equipe. Fornecer oportunidades contínuas de aprendi-

zado para os membros existentes se manterem atualizados com mudanças no produ-

to/serviço.

• Chat Interno: Facilitar a comunicação em tempo real entre os membros da equipe para

que possam buscar assistência ou colaborar em conversas desafiadoras.

• Pesquisas de feedback do Cliente: Pesquisas pós-interação para coletar feedback

dos clientes. Analisar feedback para identificar áreas de melhoria e elogiar serviços

exemplares.

• Automação de Tarefas: Automatizar tarefas repetitivas (como enviar mensagens de

reconhecimento) para reduzir a carga de trabalho manual e potenciais erros.

• Caminhos de Escalonamento: Definir procedimentos claros de escalonamento, ga-

rantindo que questões complexas ou sensíveis sejam encaminhadas aos indivíduos ou

departamentos adequados.

• Garantia de Qualidade: Implementar ferramentas para que supervisores monitorem

e avaliem a qualidade das interações de suporte. Permitir amostragem aleatória de

interações para verificações de qualidade.

• Gerenciamento de Escalas e Turnos: Ferramentas para gerenciar os horários da

equipe, garantindo cobertura ótima em períodos de pico. Fornecer alertas para horas

extras ou não conformidade com leis trabalhistas.

• Motivação & Reconhecimento: Quadros de líderes para reconhecer membros da

equipe de alto desempenho. Implementar estratégias de gamificação para motivar os

membros da equipe a alcançar marcos de desempenho.

45

• Integração com Outras Plataformas: Integração com CRM, Gerenciamento de In-

ventário ou outras plataformas relevantes para fornecer aos representantes de suporte

todas as informações necessárias ao alcance de um clique.

• feedback Loop: Permitir que membros da equipe forneçam feedback sobre o próprio

sistema, sugerindo melhorias ou relatando problemas.

• Recursos de Segurança: Proteger os dados e conversas dos clientes. Garantir con-

formidade com regulamentos de privacidade.

3.1.3 Requisitos Rejeitados

Alguns dos requisitos listados foram desconsiderados devido à sua complexidade, sendo

eles:

• Integração com a base de conhecimento: A implementação desta funcionalidade

exigiria a criação de uma Wiki ou de um recurso similar. Isso envolveria um esforço

significativo na configuração, manutenção e integração com o sistema existente. A

complexidade e os recursos necessários para essa integração excedem o escopo e

os objetivos do projeto atual.

• Módulos de Treinamento: Esse requisito compartilha desafios semelhantes com a

integração da base de conhecimento. Seriam necessários recursos adicionais para

desenvolver módulos de treinamento interativos e sua integração no sistema atual. A

análise determinou que o benefício não justificaria o esforço adicional nesse momento.

• Automação de tarefas: A incerteza em relação à conformidade com as políticas do

WhatsApp para automatizações de terceiros torna esse requisito arriscado. Sem cla-

reza regulatória, a implementação poderia resultar em problemas legais ou técnicos,

impactando negativamente o funcionamento geral do sistema ou até mesmo invalidar

este trabalho de conclusão de curso.

• Caminhos de escalamento: A definição clara de procedimentos de escalonamento

exigiria uma pesquisa mais profunda e específica, envolvendo diversas áreas e possí-

veis cenários. Isso prolongaria o desenvolvimento e poderia atrasar outras áreas críti-

cas do projeto.

• Gerenciamento de escala de turnos: Essa funcionalidade representa um sistema

separado e não se alinha com a intenção original do projeto, que se concentra mais no

suporte ao cliente do que na gestão de recursos humanos. Portanto, foi decidido não

prosseguir com essa integração.

46

• Integração com outras plataformas: Integrar com outras plataformas, como CRM

ou Gerenciamento de Inventário, exigiria uma grande quantidade de trabalho de de-

senvolvimento e testes, além de possíveis acordos com provedores de terceiros. Essa

complexidade vai além do escopo deste projeto e, portanto, essa integração foi ex-

cluída.

• Recursos de segurança: Embora a segurança seja uma consideração vital, a decisão

foi criar apenas o mínimo necessário para garantir a segurança e a privacidade dos cli-

entes. A implementação de recursos avançados de segurança exigiria uma análise de

risco mais aprofundada, treinamento adicional e possivelmente hardware ou software

adicional. Esses fatores seriam desproporcionais ao tamanho e ao escopo do projeto

atual.

3.1.4 Categorização dos Requisitos

A seguir são categorizados os requisitos restantes em duas classes distintas. A primeira

categoria, ’Necessário ter’, inclui os requisitos indispensáveis para o funcionamento básico do

sistema. Estes devem ser cumpridos sem exceção. A segunda categoria, ’Gostaríamos de ter’,

engloba funcionalidades que, embora não essenciais, enriqueceriam o sistema, proporcionando

uma experiência de usuário mais robusta e completa.

1. Necessário ter:

• Sistema de Atendimentos

• Auto-Atribuição

• Garantia de Qualidade

• feedback Loop

2. Gostaríamos de ter:

• Análise de Desempenho

• Chat Interno

• Pesquisas de feedback do Cliente

• Motivação & Reconhecimento

O levantamento de requisitos proporcionou uma compreensão clara e concisa das ne-

cessidades e expectativas das partes interessadas. Este fundamento sólido nos permite avan-

çar para a fase de modelagem, onde a estruturação de classes, tabelas de banco de dados e

diagramas será vital para transformar estas necessidades em uma solução funcional.

47

3.2 Modelagem

A fase de modelagem marca o momento em que o projeto começa a emergir do concei-

tual para o concreto. Utilizando a fundação sólida estabelecida no levantamento de requisitos, a

estruturação de classes, do banco de dados e dos diagramas desempenha um papel crucial na

construção de uma solução funcional. É aqui que as ideias começam a tomar forma, guiadas

pelas metas claramente definidas durante o levantamento de requisitos.

3.2.1 Casos de uso

O método escolhido para demonstrar os casos de uso será o completamente vestido, ou

fully-dressed.

3.2.1.1 Caso de Uso 1: Sistema de Atendimentos

Ator Principal: Analista de suporte

Partes Interessadas e Interesses:

• Analista de suporte: Quer entrada de novas conversas com clientes rápido, e a possi-

bilidade de rastrear e gerenciar-las.

• Cliente: Quer atendimento rápido com esforço mínimo. Quer solução esperada para o

problema relatado na conversa.

• Administradores: Querem gerenciar e monitorar as conversas de suporte.

• Empresa: Quer registrar com precisão os atendimentos e satisfazer os interesses do

cliente. Quer atualização automática e rápida do status da conversa com o cliente.

Pré-condições: O analista de suporte é identificado e autenticado.

Garantia de Sucesso (Pós-condições): Atendimento é concluído com sucesso. O cli-

ente recebeu a solução adequada ao problema relatado. A conversa é registrada. A administra-

ção é informada sobre o status do atendimento encerrado.

Cenário de Sucesso Principal (ou Fluxo Básico):

1. O cliente envia uma mensagem para o atendimento ao cliente utilizando o WhatsApp.

2. O sistema registra a nova mensagem do cliente.

3. O sistema registra tenta cadastrar o cliente, caso ele não tenha um cadastro já feito.

4. O sistema mostra aos analistas de suporte a nova conversa

5. O analista recebe a mensagem do cliente e inicia uma nova tarefa.

48

6. O analista pede ao cliente as informações necessárias para iniciar um novo protocolo.

7. O cliente responde ao analista com todas as informações necessárias.

8. O analista registra no sistema as novas informações sobre o cliente na tarefa.

9. Os analistas perguntam ao cliente sobre o problema que ele está tendo com o produto.

10. O cliente fornece as informações necessárias para entender o problema.

O analista e o cliente repetem os passos 9 e 10 até que o analista entenda o problema.

11. O sistema registra uma nova tarefa.

12. O analista relata ao cliente todas as informações necessárias para resolver o problema.

13. O analista pergunta ao cliente se há algo mais com o qual possa ajudar.

14. O cliente informa que não precisa de mais nada.

15. O analista informa ao cliente que está encerrando a conversa.

16. O analista informa ao sistema que a conversa e o problema foram resolvidos, e o que

foi feito para resolver.

17. O sistema registra que a tarefa foi resolvida.

Extensões (ou Fluxos Alternativos):

*a. A qualquer momento, se a conexão com o WhatsApp encerrar:

1. O sistema guardará todas as conversas ativas.

2. O sistema marcará com uma bandeira, indicando que essas conversas têm prioridade.

3. O sistema informará aos atendentes quais são essas conversas prioritárias, para que

eles possam retornar o chamado quando restabelecer a conexão.

3-14a. O cliente decide cancelar o atendimento:

1. Cliente avisa o analista para cancelar o chamado.

2. O analista pergunta o motivo.

3. Cliente informa ou não o motivo.

4. Caso o cliente informe um motivo, adicioná-lo nos detalhes do cancelamento para ad-

ministração.

5. O sistema registra que a tarefa foi resolvida e informa o motivo (se houver).

49

3-14b. O analista decide suspender o atendimento:

1. O analista suspende o chamado.

2. O analista deve informar o motivo da suspensão do chamado.

3. O sistema registra que a tarefa foi resolvida e informa o motivo (se houver).

3-14c. O analista demora para responder o cliente:

Caso haja uma demora de resposta do atendente ou se ele deixar de encerrar o cha-

mado, o sistema irá informar o atendente em 2 momentos:

1. O primeiro momento é na marca de 5 minutos, onde o sistema irá notificar o atendente,

utilizando um elemento gráfico amarelo.

2. O segundo momento é na marca de 10 minutos, onde o sistema irá notificar o aten-

dente, utilizando um elemento gráfico vermelho.

9-10. O analista não consegue entender o problema:

1. O analista iniciará o processo pedido de transferência para outro analista.

2. O analista informará a administração o motivo.

3. a. A administração transferirá o atendimento para quem eles acharem mais adequado.

a1. O sistema apresentará ao novo analista a conversa com o cliente. b. A administra-

ção informará ao analista que o pedido foi negado.

Requerimentos especiais:

• Sem requerimentos especiais.

Lista de Variações de Dados e Tecnologia:

• Informações sobre o cliente.

• Informações sobre o problema do cliente.

Frequência de Ocorrência: Pode ser quase contínuo

Questões em Aberto: Qual será o processo para atualizar o sistema ou lidar com falhas

técnicas? Existem leis ou regulamentos que precisam ser cumpridos?

50

3.2.1.2 Caso de Uso 2: Auto-Atribuição de Conversas

Ator Principal: Cliente

Partes Interessadas e Interesses:

• Analista de Suporte: Quer receber conversas que correspondam à sua especialização,

carga de trabalho atual, e desempenho anterior.

• Equipe de Suporte: Quer distribuição justa e eficiente das conversas entre os membros.

• Administradores: Querem supervisar a distribuição de conversas, garantindo eficácia e

eficiência.

• Empresa: Quer rápida resolução das conversas, satisfazendo os clientes e mantendo

um registro preciso da distribuição.

Pré-condições: Conversas são recebidas pelo sistema. Membros da equipe estão dis-

poníveis.

Garantia de Sucesso (Pós-condições): As conversas são distribuídas aos membros

da equipe de acordo com a especialização, carga de trabalho atual e desempenho anterior. A

distribuição é registrada.

Cenário de Sucesso Principal (ou Fluxo Básico):

1. O cliente inicia uma nova conversa.

2. O sistema recebe a conversa.

3. O sistema verifica os membros da equipe disponíveis.

4. O sistema avalia a especialização e a carga de trabalho atual.

5. O sistema atribui a conversa ao membro da equipe mais adequado.

6. O sistema registra a atribuição.

7. O membro da equipe recebe a conversa e começa a interação com o cliente.

Extensões (ou Fluxos Alternativos):

*a. A qualquer momento, se não houver membros da equipe disponíveis:

1. O sistema enfileira a conversa.

2. O sistema notifica os administradores sobre a falta de disponibilidade.

2a. Membro da equipe indisponível após a atribuição:

1. O sistema redistribui a conversa a outro membro da equipe.

51

Requisitos Especiais:

• O sistema deve ser capaz de avaliar a especialização, a carga de trabalho e o desem-

penho anterior dos membros da equipe.

• A distribuição deve ser realizada em tempo real ou próximo ao tempo real para garantir

uma resposta rápida aos clientes.

Lista de Variações de Dados e Tecnologia: Não há nenhuma variação de dados ou

tecnologia.

Frequência de Ocorrência: Pode ser contínua, dependendo do volume de conversas.

Questões em Aberto:

• Como o sistema avalia a especialização e o desempenho anterior?

• Quais são os critérios para a distribuição justa das conversas?

• Existe a necessidade de intervenção manual na distribuição?

• Como o sistema lida com a mudança de disponibilidade dos membros da equipe em

tempo real?

3.2.1.3 Caso de Uso 3: Garantia de Qualidade

Ator Principal: Supervisor de Qualidade

Partes Interessadas e Interesses:

• Supervisor de Qualidade: Deseja ferramentas para monitorar e avaliar a qualidade do

atendimento ao cliente.

• Analista de Suporte: Quer feedback sobre seu desempenho para melhorar futuras in-

terações com o cliente.

• Administradores: Querem métricas confiáveis sobre a qualidade do suporte para tomar

decisões informadas.

• Empresa: Quer garantir a máxima qualidade no atendimento ao cliente para manter ou

aumentar a satisfação do cliente.

Pré-condições: Supervisor de Qualidade é identificado e autenticado.

Garantia de Sucesso (Pós-condições): Interações são revisadas e avaliadas. Relatório

de garantia de qualidade é gerado e compartilhado com os interessados.

Cenário de Sucesso Principal (ou Fluxo Básico):

1. O supervisor acessa o sistema.

52

2. O sistema apresenta uma lista de conversas de todos dos os usuários cadastrados.

3. O supervisor seleciona uma interação para revisão.

4. O sistema carrega e apresenta os detalhes da interação selecionada.

5. O supervisor avalia a interação usando critérios predefinidos (tempo de resposta, qua-

lidade da solução, etc.).

6. O supervisor opta por manter a conversa com o analista atual ou designar a conversa

para outro.

Extensões (ou Fluxos Alternativos):

2a. O sistema não possui nenhuma interação guardada

1. O sistema alerta o Supervisor da falta de interações entre os analistas e os clientes.

Requerimentos especiais:

• Sem requerimentos especiais.

Lista de Variações de Dados e Tecnologia:

• Critérios de avaliação podem ser personalizados pelo Supervisor de Qualidade ou pré-

definidos pela empresa.

Frequência de Ocorrência: A revisão e avaliação podem ser eventos diários, especial-

mente em grandes centros de suporte ao cliente.

Questões em Aberto:

• Como lidar com disputas entre o Supervisor de Qualidade e os Analistas de Suporte

em relação às avaliações?

• Quais são os critérios específicos de avaliação?

• Há alguma forma de automação para tarefas repetitivas no processo de avaliação de

qualidade?

3.2.1.4 Caso de Uso 4: feedback Loop

Ator Principal: Membro da Equipe

Partes Interessadas e Interesses:

• Membro da Equipe: Quer uma forma eficaz de comunicar problemas ou sugestões de

melhorias no sistema.

53

• Administradores: Querem coletar feedback para aprimorar a eficiência do sistema e

resolver problemas rapidamente.

• Desenvolvedores: Querem entender como suas alterações no sistema estão sendo

recebidas e que ajustes precisam ser feitos.

• Empresa: Quer garantir que o sistema atenda às necessidades da equipe, para maxi-

mizar a eficiência.

Pré-condições: Membro da equipe é identificado e autenticado no sistema.

Garantia de Sucesso (Pós-condições): O feedback é registrado e notificado aos ad-

ministradores e desenvolvedores, de acordo com a categoria designada.

Cenário de Sucesso Principal (ou Fluxo Básico):

1. O membro da equipe acessa a área de registro de “feedback “ no sistema.

2. O sistema apresenta um formulário de cadastro para o membro da equipe preencher.

3. O membro da equipe preenche o formulário, informando todos os detalhes que acredi-

tar ser necessário, e clica em “Salvar“.

4. O sistema valida os dados inseridos.

5. O sistema registra o feedback.

6. O sistema notifica os desenvolvedores sobre a criação de um novo “feedback “.

7. Os desenvolvedores decidem se irão ou não trabalhar no “feedback “ registrado.

Extensões (ou Fluxos Alternativos):

6a. Dados inválidos ou incompletos:

1. O sistema notifica o membro da equipe sobre o erro.

2. O membro da equipe corrige os dados e reenvia.

Requisitos Especiais:

• O sistema deve ser capaz de categorizar e priorizar os feedbacks.

Lista de Variações de Dados e Tecnologia:

• Tipo de feedback (Problema ou Melhoria).

• Nível de prioridade do feedback.

Frequência de Ocorrência: Esporádico, dependendo das necessidades e experiências

da equipe.

Questões em Aberto:

54

• Como os administradores e desenvolvedores tratarão esse feedback de forma eficaz?

• Existe um processo de revisão ou aprovação para as alterações propostas?

Embora ainda existam outros três requisitos que são desejáveis no sistema, foi decidido

por omiti-los para evitar um aumento na complexidade da elaboração deste documento e, con-

forme citado anteriormente com base em Larman, os caso de uso tem como objetivo ser uma

ferramenta para estabelecer promessas específicas sobre o que o sistema será capaz de fazer

(LARMAN, 2001).

3.2.2 Diagramas de entidade-relacionamento

Após a fase de análise de requisitos, é iniciada a etapa de modelagem de dados. Con-

forme destacado por Hernandez, essa fase emprega métodos como diagramas de entidade-

relacionamento (DER), modelagem de objeto semântico, modelagem de papel-objeto e UML

para estruturar o banco de dados (HERNANDEZ, 2021).

Esta seção é dedicada à fase de modelagem do banco de dados, que será implemen-

tado em MySQL. O foco aqui é na definição dos campos e sua associação com as tabelas

correspondentes. Cada tabela terá seus elementos essenciais, como chaves primárias, diferen-

tes níveis de integridade de dados e respectivos relacionamentos.

O diagrama, demostrado na Figura 5 na página 55, é composto por seis tabelas: Usuário,

Times, Status, Clientes, Conversas e Tarefas.

• Usuário: Cada usuário deve possuir um único status e deve pertencer a um único time.

• Status: Um status pode estar associado a múltiplos usuários, mas cada usuário só

pode ter um status.

• Times: Semelhante ao status, um time pode conter vários usuários, mas cada usuário

pertence a apenas um time.

• Conversas: Estas devem estar ligadas a um usuário e podem opcionalmente estar

ligadas a um cliente ou a uma tarefa.

• Tarefas: Cada tarefa deve pertencer a um usuário e a um cliente obrigatoriamente.

• Clientes: Podem estar associados a conversas e tarefas, mas essa associação é opci-

onal para conversas e obrigatória para tarefas

55

Figura 5 – Ilustração do Diagrama de Entidade-
Relacionamento do Banco de Dados

Fonte: Autoria própria (2023).

56

3.3 Desenvolvimento

Um projeto de grande porte pode ser decomposto em diversas partes menores, cada

uma com seu próprio ciclo de planejamento, design, construção e teste. Essas partes menores

são conhecidas como iterações e têm uma duração fixa, por exemplo, quatro semanas. Ao final

de cada iteração, uma parte funcional do sistema é entregue. Esse processo é semelhante

à construção de uma casa, em que, em vez de construir tudo de uma vez, os cômodos são

construídos um de cada vez, com a certeza de que cada parte está correta antes de avançar

para a próxima. Esse método é conhecido como desenvolvimento iterativo (LARMAN, 2001).

3.3.1 Autenticação

Na seção de modelagem, ao abordar os casos de uso, observou-se que todos eles

exigem que o usuário esteja autenticado no sistema. Portanto, a seção de desenvolvimento

começa com essa sequência fundamental de ações no aplicativo. Para simplificar o processo

de autenticação, utilizou-se a ferramenta Firebase Authentication, desenvolvida pelo Google.

3.3.1.1 Login

Na Figura 6 da página 57, é possível visualizar a tela de Login, criada usando os recur-

sos gráficos do Tailwind. Aqui, o usuário é solicitado a inserir seu e-mail e senha previamente

cadastrados.

No caso em que o usuário insira um e-mail não registrado ou digite uma senha incor-

reta, o sistema exibirá uma mensagem acima do campo de e-mail, em vermelho: “Usuário não

encontrado. Por favor, contate o suporte em caso de problemas com o servidor.“

Além disso, o sistema oferece dois hyperlinks, um para o registro no sistema e outro

para a recuperação de senha.

57

Figura 6 – Ilustração da tela de Login

Fonte: Autoria própria (2023).

3.3.1.2 Register

A tela de registro solicita três informações básicas para a autenticação inicial: endereço

de e-mail, senha e confirmação de senha. Além disso, incorporou-se o plugin chamado “zxcvbn“

para avaliar a qualidade da senha. Para que uma senha seja considerada válida, ela deve conter

no mínimo 4 caracteres, incluindo pelo menos uma letra maiúscula, uma letra minúscula e um

número. A Figura 7 da página 58, ilustra essa tela de registro:

Erros possíveis durante o preenchimento e envio do formulário nesta página são indica-

dos em vermelho e incluem:

• Senha não atende aos requisitos mínimos: “A senha deve conter pelo menos 4 carac-

teres, 1 letra maiúscula, 1 letra minúscula e 1 número.“;

• Senha na caixa “Confirmar senha“ não coincide com a senha inserida no campo “Se-

nha“: “As senhas não coincidem.“;

• E-mail já cadastrado inserido no campo “E-mail“: “Este e-mail já está em uso.“;

• E-mail inválido no campo “E-mail“: “Este e-mail não é válido.“;

• Erro de permissão ao cadastrar um novo usuário no Firebase Authentication: “Não é

possível criar usuários.“;

58

Figura 7 – Ilustração da tela de Registro

Fonte: Autoria própria (2023).

• Senha enviada para o Firebase Authentication é considerada fraca: “A senha é muito

fraca.“

3.3.1.3 ForgotPassword

A tela de recuperação de senha possui apenas um campo para inserção do e-mail. A

Figura 8 da página 59, seguinte ilustra essa tela:

O processo de recuperação de senha é administrado pelo Firebase Authentication. A

ferramenta envia um e-mail para o endereço informado, caso ele esteja cadastrado, contendo

um link de redirecionamento para a tela de configuração de senha, mostrada na Figura 9 na pá-

gina 59. Nessa nova tela, o usuário define sua nova senha, e a ferramenta realiza a substituição

das senhas.

Se o e-mail for enviado com sucesso, o sistema mostrará a seguinte mensagem em

verde: “E-mail enviado com êxito. Por favor, verifique sua caixa de entrada. Redirecionando

para a tela de login em 5 segundos.”

Possíveis erros durante o preenchimento e envio do formulário nesta página são desta-

cados em vermelho e incluem:

59

Figura 8 – Ilustração da tela de Recuperação de senha

Fonte: Autoria própria (2023).

Figura 9 – Ilustração da tela de definição da nova se-
nha

Fonte: Autoria própria (2023).

• E-mail inválido no campo “E-mail“: “Este e-mail não é válido.“;

• E-mail informado não cadastrado: “Este e-mail não está cadastrado.“;

• Tentativa de envio do formulário sem preencher o campo “E-mail“: “Por favor, informe

seu e-mail.“;

• Erro do Firebase Authentication ao tentar enviar o e-mail: “Ocorreu um erro ao enviar

o e-mail. Entre em contato com o suporte sobre o erro: “

60

3.3.1.4 Sistema de atendimentos

A primeira função desse sistema é a chamada “createTalkWebHook“, demonstrada na

Listagem 7 na página 61, que é responsável por lidar com uma solicitação de webhook de

forma assíncrona. Todas as funções que devem possuir um corpo como dos tipos POST e

PATCH, possuem uma verificação se o corpo da solicitação está vazio ou inválido e, se for o

caso, retorna um código de status 400 com uma mensagem de erro.

Em seguida, a função extrai informações relevantes do corpo da solicitação, como nome

de quem enviou, destinatário, tipo de mensagem e conteúdo da mensagem. Ela usa essas in-

formações para pegar detalhes da conversa, legenda e URL da mensagem. A função também

chama outras três funções, “checkForEspecialist”, “checkForClientInfo” e “checkForUserTaskAc-

tiveNumber”, para obter os valores de identificação associados ao remetente e ao destinatário.

Ambas as funções “checkForEspecialist“ e “checkForUserTaskActiveNumber“ serão explicadas

com detalhes no texto da próxima funcionalidade, Auto-Atribuição de Conversas.

A função chamada “checkForClientInfo“, também é assíncrona que recebe dois parâme-

tros: “whatsappIdentification“ e “name“. Sua função principal é encontrar um cliente no banco

de dados usando o método “findOne“ e retornar o cliente, caso exista. Se o cliente não existir e

um parâmetro “name“ for fornecido, a função cria um novo cliente no banco de dados usando o

método “create“ e retorna o cliente recém-criado.

Para realizar isso, a função utiliza a opção “where“ para especificar a condição da con-

sulta e a opção “limit“ para limitar o resultado a uma única linha. Se o cliente não for encontrado

e um parâmetro “name“ for fornecido, a função criará um novo cliente no banco de dados usando

o método “create“. Esse método é usado para inserir uma nova linha na tabela de clientes, com

os atributos “name“ e “phone“ definidos com os valores fornecidos.

Além disso, a função utiliza a função “checkForActiveTasks“ para obter informações re-

lacionadas à tarefa ativa associada ao destinatário.

Por fim, a função “createTalkWebHook“ cria um novo registro de conversa no banco

de dados usando o método “create“ e retorna um código de status 201 se a criação for bem-

sucedida. Se ocorrer algum erro, ela retorna um código de status 500 com uma mensagem de

erro. Esta função também emite um evento através do socket.io para atualizar as conversas.

61

Listagem 7 – Entrada para novas conversas vindas do WhatsApp

1 export async function createTalkWebHook (req , res) {
2 t r y {
3 // Validate request
4 i f (! req . body | | Object . keys (req . body) . leng th === 0) {
5 return res . status (4 0 0) . send ({
6 message : except ions . emptyBody ()
7 }) ;
8 }
9

10 i f (! req . body . data) {
11 return res . status (4 0 0) . send ({
12 message : except ions . emptyData ()
13 }) ;
14 }
15
16 const {
17 pushName ,
18 key : { remoteJid } ,
19 messageType ,
20 msgContent
21 } = req . body . data ;
22
23 const { conversat ion , capt ion , u r l } =
24 msgContent | | msgContent [messageType] ;
25
26 const message =
27 messageType === ’conversation’ ? conversat ion : cap t ion | | ’’ ;
28 const f i n a l U r l = messageType === ’conversation’ ? nul l : u r l ;
29
30 l e t user IdResu l t = awai t checkForEspec ia l i s t (remoteJid) ;
31
32 const c l i e n t I d R e s u l t = awai t checkForC l ien t In fo (remoteJid , pushName) ;
33
34 i f (! user IdResu l t) {
35 user IdResu l t = awai t checkForUserTaskActiveNumber () ;
36 }
37
38 const t a s k I d e n t i f i c a t i o n = awai t checkForAct iveTasks (remoteJid) ;
39
40 // Save Talk in the database
41 const t a l k = awai t t a l k s . c reate ({
42 f k _ u s e r s _ i d e n t i f i c a t i o n : user IdResu l t | | 1 ,
43 f k _ c l i e n t s _ i d e n t i f i c a t i o n : c l i e n t I d R e s u l t | | null ,
44 message ,
45 f k _ t a s k s _ i d e n t i f i c a t i o n : t a s k I d e n t i f i c a t i o n ,
46 w h a t s a p p _ i d e n t i f i c a t i o n : remoteJid ,
47 u r l : f i n a l U r l ,
48 type : messageType ,
49 from_me : fa lse
50 }) ;
51
52 i o . emit (’talks’ , ’Atualizar conversas’) ;
53 return res . status (2 0 1) . send (t a l k) ;
54 } catch (e r r) {
55 return res . status (5 0 0) . send ({
56 message : except ions . c rea teEr ro r (’Conversa’ , e r r . message)
57 }) ;
58 }
59 }

Fonte: Autoria própria (2023).

62

Listagem 8 – Checagem de tarefas ativas relacionadas ao número de WhatsApp

1 async function checkForAct iveTasks (phone) {
2 const prev iousTa lk = awai t t a l k s . f indOne ({
3 where : {
4 w h a t s a p p _ i d e n t i f i c a t i o n : phone ,
5 f k _ t a s k s _ i d e n t i f i c a t i o n : {
6 [Op. not] : nul l
7 }
8 } ,
9 order : [[’created_at’ , ’DESC’]]

10 }) ;
11
12 i f (p rev iousTa lk) {
13 const task = awai t tasks . f indByPk (prev iousTa lk . f k _ t a s k s _ i d e n t i f i c a t i o n) ;
14 i f (! task . i s _ i t _ s o l v e d) {
15 return task . i d e n t i f i c a t i o n ;
16 }
17 }
18
19 return nul l ;
20 }

Fonte: Autoria própria (2023).

63

Após essa etapa inicial de cadastro do cliente, cadastro da conversa e verificação de

quem é o analista mais adequado para ser responsável pelo atendimento, quem foi designado

deve iniciar uma nova tarefa, selecionando qual mensagem deve ser considerada o começo da

tarefa dando um clique em cima da mensagem, isso fará que a mensagem fique destacada com

uma borda verde.

Em seguida, o analista deve utilizar um botão presente na tela de conversa com um

cliente, que abrirá o formulário de criação de tarefas demonstrado na Figura 10.

Figura 10 – Ilustração do formulário de criação de ta-
refa

Fonte: Autoria própria (2023).

Caso não seja possível para o sistema cadastrar o cliente utilizando a função “checkFor-

ClientInfo“, esse mesmo botão será substituído por um botão similar que levará ao assistente

para o formulário de criação de clientes, demonstrada na Figura 11 na página 64.

64

Figura 11 – Ilustração do formulário de criação de cli-
ente

Fonte: Autoria própria (2023).

Após terminar o cadastrado de uma nova tarefa o sistema utilizará a função “checkFo-

rActiveTasks“, toda vez que receber ou enviar uma nova mensagem.

A função assíncrona chamada “checkForActiveTasks“, demonstrada na Listagem 8 na

página 62, recebe um parâmetro “phone“. A função tem a finalidade de encontrar a conversa

mais recente associada ao telefone fornecido e a uma identificação de tarefa (fk_tasks_identifi-

cation) não nula, usando o método “findOne“.

Se a conversa existir e a tarefa associada não estiver resolvida, a função retorna o atri-

buto “identification“ da tarefa. Se a conversa não existir ou a tarefa associada estiver resolvida,

a função retorna “null“.

Para fazer isso, a função utiliza a opção “where“ especificando a condição da consulta,

a opção “order“ classificando o resultado com base no atributo “created_at“ em ordem decres-

cente, e a opção “include“ incluindo a tarefa associada no resultado. A função utiliza o operador

“Op.not“ que especifica que o atributo “fk_tasks_identification“ não deve ser nulo. Isso garante

que todas as novas mensagens sejam relacionadas com essa nova função.

Após a realização do atendimento, o analista de suporte pode encerrar a conversa fa-

zendo a mesma seleção, só que agora para indicar onde a tarefa terminou, e clicar no botão de

encerrar atendimento. Isso fará que o sistema atualize a tarefa ativa como resolvida, e todas as

mensagens posteriores a escolhida, terão o campo “fk_tasks_identification“ igual a “null“.

O ideal seria que o analista após o encerramento da tarefa, utilizasse a tela de edição

da tarefa para informar os detalhes da solução encontrada para o problema. Mas o sistema não

obriga o analista a informar esses detalhes.

65

Aqui está uma demostração na Figura 12 de como as mensagens recebidas pelo What-

sApp é apresentada no aplicativo, e o equivalente no WhatsApp Desktop na Figura 13:

Figura 12 – Ilustração da conversa no aplicativo

Fonte: Autoria própria (2023).

Figura 13 – Ilustração da conversa no WhatsApp
Desktop

Fonte: Autoria própria (2023).

66

Listagem 9 – Checagem usuários responsáveis anteriormente pela conversa

1 async function checkForEspec ia l i s t (w h a t s a p p I d e n t i f i c a t i o n) {
2 const r e s u l t = awai t t a l k s . f indOne ({
3 where : {
4 w h a t s a p p _ i d e n t i f i c a t i o n : w h a t s a p p I d e n t i f i c a t i o n
5 } ,
6 a t t r i b u t e s : [’fk_users_identification’] ,
7 order : [[’created_at’ , ’DESC’]] ,
8 l i m i t : 1
9 }) ;

10
11 return r e s u l t !== nul l
12 ? JSON. parse (JSON. s t r i n g i f y (r e s u l t)) . f k _ u s e r s _ i d e n t i f i c a t i o n
13 : r e s u l t ;
14 }

Fonte: Autoria própria (2023).

3.3.1.5 Auto-Atribuição de Conversas

Como foi informado na última sessão, aqui serão explicadas as funções responsáveis por

fazer o balanceamento inicial das conversas entre os analistas de suporte, “checkForEspecialist“

e “checkForUserTaskActiveNumber“. Sobre a “checkForEspecialist“ descrita na Listagem 9, é

uma função assíncrona que recebe o parâmetro “whatsappIdentification“.

Ela tem a finalidade de encontrar a conversa mais recente associada à identificação do

WhatsApp fornecida, utilizando o método “findOne“, e retorna o atributo “fk_users_identification“

dessa conversa, se existir. Se a conversa não existir, a função retorna “null“. A ideia é que se

a conversa possuir anteriormente um usuário que foi responsável por ela, o sistema considera

esse usuário como um especialista sobre aquele cliente.

Para fazer isso, a função utiliza a opção “where“ para especificar a condição da consulta,

a opção “attributes“ para determinar quais atributos incluir no resultado, a opção “order“ para

classificar o resultado com base no atributo “created_at“ em ordem decrescente, e a opção

“limit“ para limitar o resultado a uma única linha.

Caso o sistema não encontre um usuário considerado como “especilista“, ele executa a

função “checkForUserTaskActiveNumber“, descrita na Listagem 10 na página 67, que é assín-

crona e tem como objetivo encontrar a identificação de um usuário com tarefas não resolvidas

abaixo do limite permitido.

Primeiramente, ela procura todos os usuários com um status de “ativo“ (representado

pelo valor 1) usando o método “findAll“. Em seguida, ela obtém a identificação e o limite de

tarefas (task_limit) de cada usuário e classifica o resultado com base na data de criação, em

ordem decrescente. A ideia é sempre passar primeiro por usuário senior. Se nenhum usuário

for encontrado, a função retorna “null.“

67

Listagem 10 – Checagem usuários disponíveis para receber a nova conversa

1 async function checkForUserTaskActiveNumber () {
2 const usersData = awai t users . f i n d A l l ({
3 where : {
4 f k _ s t a t u s e s _ i d e n t i f i c a t i o n : 1
5 } ,
6 a t t r i b u t e s : [’identification’ , ’task_limit’] ,
7 order : [[’created_at’ , ’DESC’]]
8 }) ;
9

10 i f (usersData === nul l) {
11 return nul l ;
12 }
13
14 f o r (const user o f usersData) {
15 const r e s u l t = awai t tasks . f indAndCountAl l ({
16 where : {
17 f k _ u s e r s _ i d e n t i f i c a t i o n : user . i d e n t i f i c a t i o n ,
18 i s _ i t _ s o l v e d : fa lse
19 }
20 }) ;
21
22 i f (r e s u l t . count < user . t a s k _ l i m i t) {
23 return user . i d e n t i f i c a t i o n ;
24 }
25 }
26
27 return nul l ;
28 }

Fonte: Autoria própria (2023).

Para cada usuário encontrado, a função verifica o número de tarefas não resolvidas

associadas a esse usuário usando o método “findAndCountAll.“ Ela obtém a identificação do

usuário (fk_users_identification) e o estado de resolução da tarefa (is_it_solved).

Se o número de tarefas não resolvidas associadas a esse usuário for menor do que o

limite de tarefas permitido para o usuário (task_limit), a função retorna a identificação desse

usuário.

Se nenhum usuário for encontrado com tarefas não resolvidas abaixo do limite permitido,

a função também retorna “null.“

Essa função tem como objetivo encontrar um usuário ativo que tenha capacidade para

receber uma nova conversa, considerando que suas tarefas não resolvidas estejam dentro do

limite permitido. Caso nenhum dessas funções encontre um usuário disponível para receber o

atendimento, a função “createTalkWebHook“ irá atribuir a conversa para o administrador (repre-

sentado pelo usuário com número de identificação 1), que ficará responsável por transferir a

conversa posteriormente para um dos analistas.

68

3.3.1.6 Garantia de Qualidade

O sistema de garantia de qualidade tem poucos passos para iniciar. Quando um usuário

que possui a flag is_admin marcada, o sistema irá optar para realizar a chamada da função

“findAllTalks“, demostrada na Listagem 11 na página 69, que realiza uma chamada da API para

o servidor buscar todas as mensagens cadastradas no servidor. E caso a flag esteja desabili-

tada, o sistema irá chamar a função findAllTalksByUser que limita a busca pelo identificador do

usuário. Essa verificação é feita pela função “fetchTalks“, demostrada na Listagem 12 na página

69,.

A função “findAllTalks“ é uma função assíncrona que obtém uma lista de conversas de

um servidor remoto e preenche o objeto de conversas (talks) com os dados recuperados. O

que ela faz é enviar uma solicitação GET para o servidor em uma URL específica usando a

API de busca (fetch), com o cabeçalho Content-Type configurado como application/json. Se a

solicitação for bem-sucedida, a resposta é analisada usando o método response.json(), e os

dados resultantes são usados para preencher o objeto de conversas (talks). Esse objeto “talks“

é uma estrutura que associa números de identificação do WhatsApp a objetos de conversa. Se

a solicitação falhar, qualquer erro é registrado no console e o usuário é redirecionado para a

página de erro 404 usando a função router.push.

Isso permite que o administrador visualize e interaja com qualquer conversa, mesmo se

ela estiver atribuída a outro usuário. O administrador também possuí algumas outras opções

que usuário normais não tem, a mais relevante é a atribuição manual da conversa para outro

usuário. Essa opção permite ao administrador transferir a visualização da conversa atual para

outro, e assim retirar do usuário anterior o poder de visualizar ou interagir com a conversa. Na

Figura 14 é possível ver a área de interação disponível para um administrador em uma conversa.

Figura 14 – Ilustração da tela de conversa

Fonte: Autoria própria (2023).

69

Listagem 11 – Verificação se o usuário é ou não administrador

1 async function f i n d A l l T a l k s () {
2 const u r l = GCurl + ‘ ‘ t a l ks ‘ ‘ ;
3 t r y {
4 const response = awai t f e t ch (u r l , {
5 method : ‘ ‘GET‘ ‘ ,
6 headers : {
7 ‘ ‘ Content −Type ‘ ‘ : ‘ ‘ a p p l i c a t i o n / json ‘ ‘
8 }
9 }) ;

10 const data = awai t response . json () ;
11 i f (data) {
12 t a l k s . value = { } ;
13 f o r (const t a l k o f data) {
14 t a l k s . value [t a l k . w h a t s a p p _ i d e n t i f i c a t i o n] = t a l k ;
15 }
16 }
17 return ;
18 } catch (error) {
19 console . error (error) ;
20 r o u t e r . push ({
21 name : ‘ ‘404 Resource ‘ ‘ ,
22 params : { resource : ‘ ‘ chamada encont rar conversa ‘ ‘ }
23 }) ;
24 }
25 }

Fonte: Autoria própria (2023).

Listagem 12 – Verificação se o usuário é ou não administrador

1 function f e t chTa lks () {
2 userStore . user . is_admin ? f i n d A l l T a l k s () : f i ndA l lTa lksByUser () ;
3 }

Fonte: Autoria própria (2023).

70

3.3.1.7 Feedback Loop

A funcionalidade de feedback foi projetada para se integrar ao sistema de gerenciamento

de tarefas já existente. Em termos de interface, ela usa as mesmas telas que o sistema de

tarefas convencional demonstrada na Figura 10 na página 63, com a principal diferença sendo

a localização do botão para criar uma nova entrada, presente no menu lateral da tela principal.

Neste caso, o botão serve para adicionar uma “tarefa de feedback “.

No sistema, as tarefas de feedback são automaticamente enviadas para um time de

desenvolvimento específico. Este time é responsável por avaliar e decidir quais delas são rele-

vantes e que alterações sugeridas deverão ser implementadas. Para diferenciar tarefas comuns

de tarefas de feedback, uma bandeira é usada na tabela de tarefas. Isso foi especificado no

diagrama de entidade de relacionamento do projeto, demonstrado na Figura 5 na página 55.

Essa bandeira é responsável por diferenciar para o sistema entre os dois tipos de tarefas.

Outro detalhe é que, ao criar uma tarefa de feedback, a opção de escolher um time di-

ferente para alocá-la está desabilitada. O time de desenvolvimento responsável já é predefinido

pelo sistema.

3.4 Testes

Esta seção é utilizada para relatar os testes realizados para confirmar que as implemen-

tações realizada no sistema desempenhe o papel necessário para as funcionalidades descritas

anteriormente. O método utilizado para realizar os testes foi o de Testes Unitários, com a fer-

ramenta Jest (v29.6.4). Como explicado anteriormente no Capítulo 2, Sommerville (2011) diz

os testes unitários tem o foco em testar componentes do sistema individualmente, onde as fun-

ções e métodos são os componentes mais simples do programa. E também foi comentado no

Capítulo 2, que Sommerville (2011) recomenda a utilização de frameworks de automação para

escrever e executar testes, pois eles são capazes de executar todos os testes implementados e

repotar resultados.

Após a implementação e execução dos testes pelo Jest, é possível visualizar algumas

estatísticas relevantes sobre a cobertura oferecida pelos testes em relação a diferentes arquivos

e ao código como um todo, demonstrado na Figura 15.

71

Figura 15 – Ilustração da cobertura de testes unitá-
rios

Fonte: Autoria própria (2023).

É possível separar a imagem em três sessão menores, que demonstra diferentes dados.

Começando uma analise de cima para baixo, na Figura 16 é possível ver quais arquivos foram

adicionados para realizar os testes. A separação utilizada na criação dos arquivos é semelhante

aos que eles estão testando, onde os arquivos dos controladores, dos scripts do banco de dados

e o arquivo utilitário estão separados por pastas. Também é informado em verde que todos os

testes implementados nesse arquivos resultaram no era esperado deles.

Figura 16 – Ilustração dos arquivos cobertos pelos
testes unitários

Fonte: Autoria própria (2023).

72

Nos registros dos controladores, foram conduzidos testes para verificar as operações de

cadastro, busca, atualização e exclusão dos dados relacionados a cada modelo de entidade no

banco de dados. Os principais testes elaborados para esses cenários foram consolidados na

lista a seguir. Para facilitar a legibilidade, a lista foi organizada de forma a destacar os testes

que se repetiram em diversos modelos de entidade:

• Cadastro:

– Deve criar uma entidade.

– Deve retornar a entidade criada.

– Deve retornar a entidade criada com identificação.

– Deve enviar uma mensagem de mídia.

– Deve retornar a entidade criada com a identificação de entidade estrangeira.

– Deve retornar um erro se você tentar criar uma nova entidade com os mesmos

dados.

– Deve retornar um erro se você tentar criar uma nova entidade com o corpo

vazio.

– Deve retornar um erro se você tentar criar uma nova entidade com o nome

vazio.

– Deve retornar um erro se você tentar criar uma nova entidade com o e-mail

vazio.

– Deve retornar um erro se você tentar criar uma nova entidade com a mensa-

gem vazia.

– Deve retornar um erro se você tentar criar uma nova entidade com a identifi-

cação de WhatsApp vazia.

– Deve retornar um erro se você tentar criar uma nova entidade com o tipo vazio.

– Deve retornar um erro se você tentar criar uma nova entidade com a descrição

vazia.

– Deve retornar um erro 500 usando um mock.

• Busca:

– Deve encontrar uma entidade.

– Deve retornar a entidade encontrada.

– Deve encontrar todas as entidades.

– Deve retornar as entidades encontradas.

– Deve conter a entidade criada.

73

– Deve encontrar todas as entidades pela chave estrangeira da entidade.

– Deve retornar um erro se você tentar encontrar uma entidade com um ID

vazio.

– Deve retornar um erro se você tentar encontrar uma entidade com um ID

inválido.

– Deve retornar um erro se você tentar encontrar todas as entidades e a lista

estiver vazia.

– Deve retornar um erro se você tentar encontrar uma entidade com o email

vazio.

– Deve retornar um erro se você tentar encontrar uma entidade com um email

inválido.

– Deve retornar um erro se você tentar encontrar todas as entidades com um ID

vazio.

– Deve retornar um erro se você tentar encontrar uma entidade com um ID de

entidade estrangeira inválido.

– Deve retornar um erro 500 usando um mock.

• Atualização:

– Deve atualizar a entidade criada.

– Deve atualizar uma entidade.

– Deve receber uma mensagem confirmando que a entidade foi atualizada.

– Deve retornar a entidade atualizada.

– Deve retornar um erro se você tentar atualizar uma entidade estrangeira que

não existe vinculada a uma entidade.

– Deve retornar um erro se você tentar atualizar uma entidade com os mesmos

campos pelos quais já está registrada.

– Deve retornar um erro se você tentar atualizar uma entidade com o corpo

vazio.

– Deve retornar um erro se você tentar atualizar uma entidade com o ID vazio.

– Deve retornar um erro se você tentar atualizar uma entidade com um ID invá-

lido.

– Deve retornar um erro se você tentar atualizar uma entidade com um campo

vazio dentro do corpo.

– Deve retornar um erro 500 usando um mock.

74

• Exclusão:

– Deve excluir uma entidade.

– Deve retornar a entidade excluída.

– Deve excluir a mensagem de mídia.

– Deve retornar um erro se você tentar excluir uma entidade duas vezes.

– Deve retornar um erro se você tentar excluir uma entidade com um ID vazio.

– Deve retornar um erro se você tentar excluir uma entidade com um ID inválido.

Essa cobertura de testes foi criada com objetivo de averiguar que todas as funções dos

controladores retornem os resultados esperados mesmo se forem propositalmente sabotados

por uma falha de outras funções ou pelo envio de entradas erradas, alinhando com o que Som-

merville (2011) explica sobre os objetivos dos testes unitários.

Os testes unitários criados para o script responsável por popular o banco de dados com

algumas entidades padrões foram consolidados na lista a seguir. Diferente dos controladores

os testes necessários para o script não foram tão complexos:

• Deve popular o banco de dados com entidades padrão.

• Não deve popular o banco de dados com entidades padrão.

• Deve retornar um erro ao tentar popular o banco de dados com entidades padrão.

E, por último, o arquivo de exceções foi submetido a apenas dois tipos de testes. O

primeiro verifica se a função recebeu os parâmetros, enquanto o segundo verifica se a função

não recebeu parâmetros.

Não foram elaborados testes adicionais devido à explicação fornecida por Sommerville

(2011), que argumenta ao testar uma função que envolve cálculos e requer dois números positi-

vos, é razoável esperar que o programa funcione de maneira semelhante para todos os números

positivos.

Essa mesma explicação foi utilizada na decisão de não construir testes para os arquivos

de rotas, pois eles fariam o mesmo percurso de testes que os controladores dado que a função

deles é disponibilizar os controladores para API.

Ao prosseguir com a análise da Figura 15 na página 71, vem a seção estatística da

cobertura de código. Nessa seção, demonstrada pela Figura 17 na página 76, é possível vi-

sualizar a porcentagem de cobertura tanto para todos os arquivos quanto para cada um deles

individualmente. As porcentagens indicam os seguintes elementos:

• Ramos (representados como ’Branches’) são declarações condicionais cujas condi-

ções foram satisfeitas pelo menos uma vez durante os testes unitários.

75

• Funções (representadas como ’Funcs’) são funções que foram chamadas pelo menos

uma vez durante os testes unitários.

• Linhas (representadas como ’Lines’) são linhas de código que foram executadas pelo

menos uma vez durante os testes unitários.

• Declarações (representadas como ’Stmts’) são instruções que foram executadas pelo

menos uma vez durante os testes unitários. Por exemplo, uma única linha pode conter

duas declarações.

E por último, as Linhas Não-Cobertas (identificadas como ’Uncovered Line #s’), que se

referem às linhas de código em que nenhum teste foi executado. É notável que no arquivo

“controllers/talks.js“, há várias linhas que não foram submetidas a testes. Isso ocorre devido ao

fato de estarem contidas em funções que não são exportadas pelo arquivo, uma vez que são

destinadas ao uso interno por outras funções.

Mesmo que sejam criados casos de teste para as funções que as chamam, a cobertura

dessas linhas seria desafiadora, pois se destinam a exceções muito específicas.

Outro ponto de observação é que todos os arquivos, com exceção das rotas, do con-

trolador das conversas e do iniciador do servidor, apresentam uma cobertura completa. Isso

indica que foram desenvolvidos testes para todas as possibilidades de execução de cada linha

de código.

76

Figura 17 – Ilustração das estatística da cobertura
dos testes unitários

Fonte: Autoria própria (2023).

Encerrando a análise da Figura 15 na página 71, é possível observar o número total

de arquivos de testes, a quantidades de testes realizados e o tempo de execução deles, de-

monstrados na Figura 18. Foram 8 arquivos de testes, 295 testes criados e executados em um

período 6.933 segundos.

Figura 18 – Ilustração das quantidades da cobertura
dos testes unitários

Fonte: Autoria própria (2023).

77

4 CONCLUSÃO

A plataforma digital criada se dedicada à otimização do gerenciamento de conversas

em equipe. Esta aplicação incorpora funcionalidades destinadas à alocação, monitoramento e

supervisão de diálogos, proporcionando aos grupos de suporte a capacidade de registrar suas

interações com os clientes para fins de análise posterior.

Esse recurso capacita tanto os analistas de suporte quanto os administradores a exa-

minar, avaliar, analisar em detalhes, desmembrar e extrair conhecimento dessas interações,

visando à adaptação futura. Além disso, concede aos administradores a autoridade de interven-

ção, caso julguem necessário, durante ou após o processo de atendimento.

Adicionalmente, a plataforma inclui um algoritmo de distribuição automática das intera-

ções recebidas, direcionando-as para os membros da equipe com base em critérios como a

carga de trabalho atual, especialização na área temática e histórico de desempenho. Estas mé-

tricas podem ser personalizadas pelo administrador da plataforma, proporcionando ferramentas

para o acompanhamento, avaliação qualitativa e controle das interações de suporte.

O resultado é a implementação de um sistema robusto que simplifica a gestão e a distri-

buição eficaz das conversas dentro da equipe, utilizando a troca de mensagens como o principal

meio de comunicação.

A integração com o aplicativo WhatsApp proporcionou uma maior facilidade na comuni-

cação com os consumidores, uma vez que este se revelou um meio amplamente utilizado pelos

brasileiros em sua rotina diária, como indicado em uma pesquisa conduzida pela Opinion Box e

referenciada por Salgado (2022).

A seleção das tecnologias adotadas possibilitou a utilização de uma linguagem de pro-

gramação unificada tanto para o servidor quanto para a aplicação cliente, o que resultou na

redução da curva de aprendizado durante o desenvolvimento deste projeto.

Além disso, a vibrante comunidade em torno do JavaScript viabilizou a integração de

ferramentas que desempenharam papéis cruciais no sistema, incluindo a modelagem de dados,

a comunicação com o banco de dados, a otimização do processo de autenticação, a avaliação

da robustez das senhas cadastradas no sistema e a simplificação do desenvolvimento de testes

unitários.

Embora o JavaScript é geralmente considerado uma linguagem de fácil aprendizado

para iniciantes, porém, é importante destacar que a natureza assíncrona e o gerenciamento de

eventos no Node.js podem apresentar desafios adicionais para desenvolvedores menos experi-

entes.

Também, a atenção à performance do código é fundamental, uma vez que o Node.js

não é a escolha ideal para operações intensivas de CPU, pois isso pode resultar no bloqueio

do processamento de outras solicitações. Por último, embora a comunidade JavaScript seja

ampla e ofereça muitas soluções, é necessário ter em mente que algumas dessas soluções

78

podem ser instáveis ou possuir documentação insuficiente, o que requer cautela na escolha e

implementação de bibliotecas e frameworks.

É interessante notar que a curva de aprendizado inicial do Vue.js é relativamente curta,

graças à sua capacidade de interagir diretamente com o conteúdo da página de forma dinâmica.

Isso possibilita a criação de interfaces que podem alterar seus estados sem interromper o fluxo

de trabalho do usuário.

Por outro lado, o Tailwind CSS requer um período de adaptação devido à sua abordagem

única na estruturação de estilos CSS. No entanto, uma vez superada essa fase inicial, a con-

veniência de organizar o código por meio de classes que representam mudanças na interface

simplifica a leitura e análise do código implementado, tornando-o mais compreensível e fácil de

manter.

É compreensível que, ao longo deste projeto, tenham sido implementados muitos recur-

sos enquanto outros desejáveis tenham sido deixados de lado, devido à complexidade ou à falta

de tempo. No entanto, essa abordagem possibilita melhorias futuras no sistema, já que abre ca-

minho para a adição de módulos e funcionalidades que podem aprimorar significativamente o

valor do trabalho realizado.

A inclusão de recursos como a criação de relatórios para a análise estatística do desem-

penho das interações de suporte, a comunicação interna da equipe por meio do aplicativo, a

capacidade de registrar diretamente as opiniões, reclamações e sugestões dos consumidores,

bem como recursos para incentivar e reconhecer o alto desempenho dos membros da equipe

de suporte, certamente contribuiria para enriquecer ainda mais o sistema.

Uma atividade prospectiva adicional envolveria a submissão deste sistema à homologa-

ção em contextos empresariais que albergam uma equipe de atendimento ao cliente, indepen-

dentemente do emprego do WhatsApp ou de outros meios de comunicação, a fim de corroborar

a suficiência do aplicativo em substituir o paradigma de atendimento previamente empregado

por tais entidades.

Por fim, este trabalho demonstra a habilidade do aplicativo em estabelecer uma comuni-

cação eficaz com uma plataforma de mensagens amplamente adotada pelos consumidores no

país. Além disso, ele oferece recursos essenciais para a gestão e distribuição das interações

com os clientes entre os membros da equipe de suporte que fazem uso dele. Isso ressalta a

possibilidade do aplicativo otimizar as operações de suporte e melhorar a comunicação com os

consumidores.

79

REFERÊNCIAS

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. ABNT NBR 9000: Sistema de gestão
da qualidade: Fundamentos e vocabulário. Rio de Janeiro, 2015. 3–4 p.

BAROT, T.; OREN, E. Communications and community on internet relay chat. Gitbooks, 2015.

BODET, G. Customer satisfaction and loyalty in service: Two concepts, four constructs, several
relationships. Journal of Retailing and Consumer Services, v. 15, n. 3, p. 156–162, 2008.

BUDGEN, D. Software Design. 2. ed. [S.l.]: Pearson Education Limited, 2003. ISBN
0201722194.

CHEN, I. J.; POPOVICH, K. Understanding customer relationship management (crm).
Business Process Management Journal, MCB UP Ltd, v. 9, n. 5, p. 672–688, Out 2003. ISSN
1463-7154. Disponível em: https://doi.org/10.1108/14637150310496758.

COCKBURN, A. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2001. ISBN
978-0-201-70225-5.

CRESSLER, C. Understanding WhatsApp’s Architecture & System Design. [S.l.], 2021.

EXPRESS.JS. Using middleware. [S.l.], 2023. Disponível em: https://expressjs.com/en/guide/
using-middleware.html. Acesso em: 21/03/2023.

EXPRESS.JS. Web Applications. [S.l.], 2023. Disponível em: https://expressjs.com. Acesso
em: 21/03/2023.

FOWLER, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language. 3.
ed. Boston, MA: Addison-Wesley, 2003. ISBN 978-0-321-19368-1.

GOOGLE PLAY STORE. WhatsApp Messenger. 2023. Disponível em: https://play.google.
com/store/apps/details?id=com.whatsapp. Acesso em: 28/03/2023.

HERNANDEZ, M. J. Database Design for Mere Mortals®: 25th Anniversary Edition. 25th
anniversary edition. ed. [S.l.]: Addison-Wesley, 2021.

IBGE (Ed.). Acesso à internet e à televisão e posse de telefone móvel celular
para uso pessoal 2021 / IBGE, Coordenação de Pesquisas por Amostra de
Domicílios. Rio de Janeiro: IBGE, 2022. ISBN 9788524045431. Disponível em: https:
//biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963. Acesso em:
01/04/2023.

https://doi.org/10.1108/14637150310496758
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963

80

KUMAR, A. et al. Measuring and improving customer retention at authorised automobile
workshops after free services. Journal of Retailing and Consumer Services, v. 39, p. 93–102,
2017.

LARMAN, C. Applying UML and Patterns: An introduction to Object-Oriented Analysis
and Design and the unified process. 2. ed. [S.l.]: Prentice Hall, 2001.

LARMAN, C.; BASILI, V. Iterative and incremental developments. a brief history. Computer,
v. 36, n. 6, p. 47–56, 2003.

MAIZE. A history of Instant Messaging and Chat. 2020. Disponível em: https:
//www.maize.io/news/lizshemaria-historyof-instant-messaging/. Acesso em: 28/03/2023.

MDN. Express/Node introduction. [S.l.], 2023. Disponível em: https://developer.mozilla.org/
en-US/docs/Learn/Server-side/Express_Nodejs/Introduction. Acesso em: 20/03/2023.

MDN. First-class Function. [S.l.], 2023. Disponível em: https://developer.mozilla.org/en-US/
docs/Glossary/First-class_Function. Acesso em: 20/03/2023.

MDN. JavaScript. [S.l.], 2023. Disponível em: https://developer.mozilla.org/en-US/docs/Web/
JavaScript. Acesso em: 20/03/2023.

MDN. JavaScript technologies overview. [S.l.], 2023. Disponível em: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview. Acesso em:
20/03/2023.

MESSEGER. MESSENGER - Tudo que você precisa saber. 2018. Disponível em:
https://m.facebook.com/messengerfacts. Acesso em: 28/03/2023.

META. How WhatsApp enables multi-device capability. 2021. Engineering at Meta.
Disponível em: https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/. Acesso
em: 28/03/2023.

MULLER, W. Gaining competitive advantage through customer satisfaction. European
Management Journal, v. 9, n. 2, p. 201–211, 1991. ISSN 0263-2373. Disponível em:
https://www.sciencedirect.com/science/article/pii/0263237391900855.

NODE.JS. About Node.js. [S.l.], 2023. Disponível em: https://nodejs.org/en/about#about-node.
js. Acesso em: 21/03/2023.

NODE.JS. About this documentation. [S.l.], 2023. Disponível em: https://nodejs.org/dist/
latest-v18.x/docs/api/documentation.html. Acesso em: 21/03/2023.

OLIVER, R. L. Effect of expectation and disconfirmation on postexposure product evaluations:
An alternative interpretation. Journal of Applied Psychology, v. 62, n. 4, p. 480–486, Aug
1977.

https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://m.facebook.com/messengerfacts
https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/
https://www.sciencedirect.com/science/article/pii/0263237391900855
https://nodejs.org/en/about#about-node.js
https://nodejs.org/en/about#about-node.js
https://nodejs.org/dist/latest-v18.x/docs/api/documentation.html
https://nodejs.org/dist/latest-v18.x/docs/api/documentation.html

81

OLIVER, R. L. Cognitive, affective, and attribute bases of the satisfaction response. Journal of
Consumer Research, v. 20, n. 3, p. 418–430, 1993.

OVERFLOW, S. Most used programming languages among developers worldwide as of
2022. 19-21 Hatton Gardens, London, EC1N 8BA, 2022.

PCMAG. Definition of memory footprint. 2023. Disponível em: https://www.pcmag.com/
encyclopedia/term/memory-footprint. Acesso em: 26/03/2023.

PCMAG. Messaging app. 2023. Disponível em: https://www.pcmag.com/encyclopedia/term/
messaging-app. Acesso em: 28/03/2023.

PEREZ, S. Twitter now lets you opt in to receive direct messages from anyone. Techcrunch,
April 2015.

POSSELT, T.; GERSTNER, E. Pre-sale vs. post-sale e-satisfaction: Impact on repurchase
intention and overall satisfaction. Journal of Interactive Marketing, v. 19, n. 4, p. 35–47, 2005.

REID, E. Communications and community on internet relay chat. Electropolis, 1991.

SALGADO, D. WhatsApp no Brasil: pesquisa revela dados sobre o comportamento do
brasileiro. 2022. Disponível em: https://blog.opinionbox.com/pesquisa-whatsapp-no-brasil/.
Acesso em: 01/04/2023.

SHARMA, P. Offshore outsourcing of customer services – boon or bane? Journal of Services
Marketing, v. 26, n. 5, p. 352–364, Jan 2012.

SHERMAN, R. Chapter 18 - project management. In: SHERMAN, R. (Ed.). Business Intelli-
gence Guidebook. Boston: Morgan Kaufmann, 2015. p. 449–492. ISBN 978-0-12-411461-6.
Disponível em: https://www.sciencedirect.com/science/article/pii/B9780124114616000186.

SHETH, J.; JAIN, V.; AMBIKA, A. Repositioning the customer support services: the next frontier
of competitive advantage. European Journal of Marketing, v. 54, n. 7, p. 1787–1804, Jan
2020.

SHUERMANS, S.; VOSKOGLOU, C. The Global Developer Population 2019 - How many
developers are there? 19-21 Hatton Gardens, London, EC1N 8BA, 2019.

SIMPSON, C. Internet relay chat. Teacher Librarian, v. 28, n. 1, p. 18, 2000.

SINGH, M. Whatsapp is now delivering roughly 100 billion messages a day. Techcrunch,
October 2020.

SOMMERVILLE, I. Engenharia de Software. 9. ed. [S.l.]: Pearson Education do Brasil, 2011.
ISBN 9788579361081.

https://www.pcmag.com/encyclopedia/term/memory-footprint
https://www.pcmag.com/encyclopedia/term/memory-footprint
https://www.pcmag.com/encyclopedia/term/messaging-app
https://www.pcmag.com/encyclopedia/term/messaging-app
https://blog.opinionbox.com/pesquisa-whatsapp-no-brasil/
https://www.sciencedirect.com/science/article/pii/B9780124114616000186

82

TECHTUDO. ICQ, MSN, SMS e WhatsApp: relembre a evolução de mensagens e apps.
2019. Techtudo Redes socias. Disponível em: https://www.techtudo.com.br/listas/2019/06/
icq-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml. Acesso em:
27/03/2023.

VUE.JS GUIDE. Introduction. [S.l.], 2023. Disponível em: https://vuejs.org/guide/introduction.
html. Acesso em: 26/03/2023.

VUE.JS GUIDE. Lifecycle Hooks. [S.l.], 2023. Disponível em: https://vuejs.org/guide/
essentials/lifecycle.html. Acesso em: 27/03/2023.

WOOLLEY, D. R. Plato: The emergence of online community. Social Media Archeology and
Poetics, MIT Press, Cambridge, 1994.

https://www.techtudo.com.br/listas/2019/06/icq-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml
https://www.techtudo.com.br/listas/2019/06/icq-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/essentials/lifecycle.html
https://vuejs.org/guide/essentials/lifecycle.html

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listagem de Códigos Fonte
	Sumário
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	2 Referencial teórico
	2.1 Atendimento ao consumidor
	2.2 Aplicativos de mensagens instantâneas
	2.2.1 WhatsApp

	2.3 Processo de Desenvolvimento
	2.3.1 Desenvolvimento Incremental
	2.3.1.1 História
	2.3.1.2 Aplicação na engenharia de software
	2.3.1.3 Entrega Incremental

	2.3.2 Engenharia de requisitos
	2.3.2.1 Elicitação e análise de requisitos
	2.3.2.2 Descoberta de requisitos
	2.3.2.3 Validação de requisitos
	2.3.2.4 Gerenciamento de requisitos

	2.3.3 Casos de uso
	2.3.3.1 História
	2.3.3.2 Partes do corpo de um caso de uso
	2.3.3.3 Formatos de casos de uso

	2.3.4 Testes
	2.3.4.1 Testes unitários

	2.4 Ferramentas de Desenvolvimento Web
	2.4.1 Node.js(v18.16.0) e Express(v4.17.3)
	2.4.2 Vue.js(3.2.25)

	3 Desenvolvimento
	3.1 Levantamento de Requisitos
	3.1.1 Identificação das Partes Interessadas e Metodologia
	3.1.2 Lista de Requisitos
	3.1.3 Requisitos Rejeitados
	3.1.4 Categorização dos Requisitos

	3.2 Modelagem
	3.2.1 Casos de uso
	3.2.1.1 Caso de Uso 1: Sistema de Atendimentos
	3.2.1.2 Caso de Uso 2: Auto-Atribuição de Conversas
	3.2.1.3 Caso de Uso 3: Garantia de Qualidade
	3.2.1.4 Caso de Uso 4: feedback Loop

	3.2.2 Diagramas de entidade-relacionamento

	3.3 Desenvolvimento
	3.3.1 Autenticação
	3.3.1.1 Login
	3.3.1.2 Register
	3.3.1.3 ForgotPassword
	3.3.1.4 Sistema de atendimentos
	3.3.1.5 Auto-Atribuição de Conversas
	3.3.1.6 Garantia de Qualidade
	3.3.1.7 Feedback Loop

	3.4 Testes

	4 Conclusão
	Referências

