UNIVERSIDADE TECNOLOGICA FEDERAL DO PARANA (UTFPR)

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT — CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE
INTEGRADO AO WHATSAPP

PONTA GROSSA
2023

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT — CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE
INTEGRADO AO WHATSAPP

NekoChat - Chat for managing customer support integrated with WhatsApp

Trabalho de Conclusdao de Curso de graduacao
apresentado como requisito para obtengao do titulo
de Tecno6logo em Anadlise e Desenvolvimento de
Sistemas da Universidade Tecnolégica Federal do
Parana (UTFPR).

Orientador: Prof. Dr. Richard Duarte Ribeiro
Coorientador: Prof. MSc. Vinicius Camargo Andrade

PONTA GROSSA
2023

Esta licenca permite remixe, adaptagao e criagéo a partir do trabalho, para fins ndo co-
BY NC

merciais, desde que sejam atribuidos créditos ao(s) autor(es). Conteudos elaborados

4.0 Internacional P°" terceiros, citados e referenciados nesta obra ndo séo cobertos pela licenga.

https://creativecommons.org/licenses/by-nc/4.0/deed.pt_BR

BRUNO CEZAR VOLPATO LERIA

NEKOCHAT - CHAT PARA ADMINISTRAR SUPORTE AO CLIENTE
INTEGRADO AO WHATSAPP

Trabalho de Conclusédo de Curso de graduacao
apresentado como requisito para obtencgao
do titulo de Tecnblogo em Analise e
Desenvolvimento de Sistemas da Universidade
Tecnolégica Federal do Parana (UTFPR).

Data de aprovacéo: 16/outubro/2023

Nome completo e por extenso do Membro 1 (de acordo com o Curriculo Lattes)
Titulo (Especializacao, Mestrado, Doutorado)
Nome completo e por extenso da instituicdo a qual pertence

Nome completo e por extenso do Membro 2 (de acordo com o Curriculo Lattes)
Titulo (Especializacao, Mestrado, Doutorado)
Nome completo e por extenso da instituicdo a qual pertence

Nome completo e por extenso do Membro 3 (de acordo com o Curriculo Lattes)
Titulo (Especializa¢ao, Mestrado, Doutorado)
Nome completo e por extenso da instituicdo a qual pertence

PONTA GROSSA
2023

Dedico este trabalho a minha querida familia,
que tem sido a minha ancora durante toda a
jornada da elaboracao deste trabalho.

AGRADECIMENTOS

Primeiramente, gostaria de agradecer aos meus orientadores, o Prof. Dr. Richard Ribeiro
e o Prof. MSc. Vinicius Camargo Andrade, pela sabedoria com que me guiaram ao longo desta
trajetéria. Suas orientacdes e conselhos foram cruciais para o sucesso deste trabalho.

Também quero deixar registrado o meu profundo reconhecimento a minha familia. Sem
0 apoio incondicional de vocés, seria muito dificil vencer os desafios que surgiram no caminho.
Mae, pai, e todos 0s meus entes queridos, este trabalho é uma pequena homenagem a gran-
deza do apoio que vocés me proporcionaram. As noites em que abdicaram de meu tempo para
me ouvir, as palavras de encorajamento nos momentos de duvida, e a fé inabalavel em meu
potencial moldaram este projeto.

Por fim, expresso minha gratidao a todos que, de alguma forma, contribuiram para a
realizacao desta pesquisa. Seja através de discussdes inspiradoras, apoio moral ou até mesmo
uma palavra amiga nos momentos de duvida, cada um de vocés teve um impacto significativo.

Esta conquista ndo é apenas minha, mas de todos nés, e é um testemunho do poder da
colaboracgao e do apoio mutuo. Obrigado por fazerem parte desta jornada.

RESUMO

O atendimento ao cliente evoluiu significativamente, passando de um mero meio para solucionar
problemas para se tornar uma estratégia voltada para a construcdo de confianca e o estabele-
cimento de um didlogo continuo com o consumidor. No entanto, a comunicagao utilizada nesse
atendimento deve ser acessivel e fornecer ferramentas que permitam as equipes de suporte
manter uma rotina eficaz. O objetivo deste projeto é desenvolver uma solugao que integre um
método de comunicagdo amplamente utilizado no pais com uma aplicacdo que ofereca ferra-
mentas para a gestdo de conversas. Para isso, foi criado um aplicativo de atendimento que se
integra ao WhatsApp, e essa integracao oferece uma oportunidade otimizar o atendimento, dis-
tribuir a carga de trabalho entre as equipes e fornecer gerenciamento de tarefas relacionadas
as conversas. Como resultado, é possivel utilizar uma Unica ferramenta, vinculada a um Unico
namero de celular, para facilitar o atendimento ao consumidor de empresas que utilizam, ou
desejam utilizar, o WhatsApp como principal meio de comunicacao com seus clientes. Isso re-
presenta uma abordagem mais eficiente e conveniente para as empresas e uma experiéncia

aprimorada para os consumidores.
Palavras-chave: atendimento ao consumidor; aplicativo web; whatsapp; gereciamento de tare-

fas.

ABSTRACT

Customer service has evolved significantly, going from just a way to solve problems to becoming
a strategy focused on building trust and establishing an ongoing dialogue with the consumer.
However, the communication used in this service should be accessible and provide tools that
enable support teams to maintain an effective routine. The goal of this project is to develop a so-
lution that integrates a widely used communication method in the country with an application that
offers conversation management tools. To achieve this, it was created a customer service app
that integrates with WhatsApp, and this integration provides an opportunity to optimize service,
distribute the workload among teams, and provide task management related to conversations.
As a result, it's possible to use a single tool, linked to a single phone number, to streamline
customer service for companies that use or want to use WhatsApp as their primary means of
communication with their customers. This represents a more efficient and convenient approach

for businesses and an enhanced experience for consumers.
Keywords: customer service; web application; whatsapp; task management.

LISTA DE FIGURAS

Figura1 — llustracao do desenvolvimento incremental 19
Figura2 - llustracao da entregaincremental 20
Figura 3 — llustracao de entrada-saida de teste deprograma. 29
Figura 4 — llustragcao do ciclo de vida de um componente 42
Figura5 - llustracao do Diagrama de Entidade-Relacionamento do Banco de Dados 55
Figura6 — llustracdodateladelogin 57
Figura7 — llustracaodateladeRegistro 58
Figura 8 — llustracao da tela de Recuperacaodesenha. 59
Figura9 - llustracao da tela de definicadodanovasenha 59
Figura 10 — llustracao do formulario de criagaodetarefa 63
Figura 11 - llustracao do formulario de criagaodecliente 64
Figura 12 - llustragcao da conversa no aplicativo 65
Figura 13 - llustracao da conversa no WhatsApp Desktop 65
Figura14 - llustracao dateladeconversa 68
Figura 15 — llustracao da cobertura de testes unitarios 71
Figura 16 — llustracao dos arquivos cobertos pelos testes unitarios 71
Figura 17 - llustracao das estatistica da cobertura dos testes unitarios 76

Figura 18 — llustracao das quantidades da cobertura dos testes unitarios 76

Listagem 1
Listagem 2
Listagem 3
Listagem 4
Listagem 5
Listagem 6
Listagem 7
Listagem 8

Listagem 9

LISTAGEM DE CODIGOS FONTE

Exemplo de funcao middleware
Exemplo de céodigoJSnoVue.js
Exemplo de cédigo HTMLno Vue.js
Exemplodeum SFCnoVue.js
Exemplo da Options APl
Exemplo da Composition APl
Entrada para novas conversas vindas do WhatsApp
Checagem de tarefas ativas relacionadas ao numero de WhatsApp .

Checagem usuarios responsaveis anteriormente pela conversa . . .

Listagem 10 — Checagem usuarios disponiveis para receber a nova conversa

Listagem 11 — Verificacao se o usuario é ou ndao administrador

Listagem 12 — Verificacao se o usuario é ou ndao administrador

SUMARIO

SUMANOt e e e e e e e e e e e e e e e e e e 8
1 INTRODUCAOD it ittt e e e e e e e et e e e e e e 10
1.1 Objetivos i i e e e e e e e e 11
1.1.1 Objetivogeral 11
1.1.2 Objetivos especificos 11
2 REFERENCIALTEORICO. it ittt e e e e e e e e e e e e e 13
2.1 Atendimentoaoconsumidor o e ... 13
2.2 Aplicativos de mensagens instantdneas 15
2.2.1 WhatsApp 16
2.3 Processo de Desenvolvimento 17
2.3.1 Desenvolvimento Incremental 18
2.3.1.1 Historia 18
2.3.1.2 Aplicacdo na engenhariade software 18
2.3.1.3 Entrega Incrementalo L o 20
2.3.2 Engenhariaderequisitoso 21
2.3.2.1 Elicitacdo e andlise de requisitos Lo 22
2.3.2.2 Descobertaderequisitoso 23
2.3.2.3 Validacdoderequisitos Lo oo 24
2.3.2.4 Gerenciamentoderequisitoso o 25
2.3.3 Casosde uso. 25
2.3.3.1 Histéria e 26
2.3.3.2 Partesdo corpodeumecasodeuso, 26
2.3.3.3 Formatosdecasosdeusoo 27
2.3.4 Testes 28
2.3.4.1 Testes unitdrios L 31
2.4 Ferramentas de DesenvolvimentoWeb 33
241 Node.js(v18.16.0) e Express(v4.17.3) 35
2.4.2 VUES(3.2.25) . v v 37
3 DESENVOLVIMENTO i i i e e e e e e e e 43
3.1 Levantamentode Requisitos 43

3.1.1 ldentificacdo das Partes Interessadas e Metodologia 43
3.1.2 Listade Requisitos 43
3.1.3 Requisitos Rejeitados 45
3.1.4 Categorizagdo dos Requisitos Lo 46
3.2 Modelagem @ . @ i i e e e e e 47
3.2.1 Casosdeuso 47
3.2.1.1 Caso de Uso 1: Sistema de Atendimentos 47
3.2.1.2 Caso de Uso 2: Auto-Atribuicdo de Conversas 50
3.2.1.3 Caso de Uso 3: Garantiade Qualidade 51
3.21.4 Casode Uso 4: feedback Loop 52
3.2.2 Diagramas de entidade-relacionamento 54
3.3 Desenvolvimento i i i i e e e 56
3.3.1 Autenticacdo 56
3.3.1.1 Login e 56
3.3.1.2 Register 57
3.3.1.3 ForgotPassword 58
3.3.14 Sistema de atendimentos 60
3.3.1.5 Auto-AtribuicBode Conversaso 66
3.3.1.6 Garantiade Qualidade 68
3.3.1.7 Feedback Loop e 70
3.4 Testes i e e e e e e e e e e e 70
4 CONCLUSAODt et e e e e e e e e e 77

10

1 INTRODUCAO

Atendimento ao cliente, uma pratica no mundo dos negdcios, serve como uma ponte
entre a empresa e seus consumidores. Sheth, Jain e Ambika (2020) explicam que o suporte ao
cliente € uma funcao administrativa que lida com o atendimento a consultas de clientes, recla-
macoes, devolucdes de mercadorias e questdes relacionadas a pagamentos, como a cobranca
de contas em atraso. Surgindo com o intuito primordial de resolver inquietagées dos clientes
acerca de produtos ou servigos oferecidos, esse canal transcendeu suas fungdes iniciais. Nao
se trata apenas de solucionar problemas, mas também de ser um meio onde os consumidores
podem expressar suas reclamacoes, sugestdes e feedbacks.

Segundo Sheth, Jain e Ambika (2020), o suporte ao cliente desempenha um papel im-
portante, servindo como um canal pelo qual os clientes mantém uma conexao significativa com
uma empresa. Além de fornecer solugbes, o atendimento ao cliente busca estabelecer uma
relacdo de confianca, promovendo um dialogo continuo com o consumidor.

As companhias de tecnologia geralmente dispdem de um setor de atendimento ao cli-
ente para sanar dividas ou problemas que os consumidores possam ter em relagao aos produ-
tos ou servigcos. Kumar et al. (2017) explica que o objetivo principal dessa area é manter uma
boa relagdo com o cliente, pois um cliente fiel ndo sé ajuda as companhias a divulgarem no-
vos produtos, como também os servigos, por indicagdo. Sharma (2012), por sua vez, constata
que diversas pesquisas ja demonstraram a existéncia de uma ligacido entre o atendimento ao
cliente, a sua satisfacao e a fidelidade a marca.

Reconhecendo a imperatividade do atendimento ao cliente, o préximo passo € discer-
nir como esse contato direto pode ser efetivamente conduzido. A questdo entdo passa a ser:
quais sdo as melhores tecnologias atualmente disponiveis para otimizar esse contato direto? A
resposta a essa pergunta pode variar dependendo do perfil do publico-alvo e da natureza do
negécio, mas o objetivo permanece o mesmo: estabelecer um canal de comunicacao eficiente
e confiavel com o consumidor.

Segundo pesquisa da Opinion Box citada por Salgado (2022), aplicativos de mensagens,
em especial o WhatsApp, sdo amplamente usados por brasileiros para se comunicar com em-
presas. Do total de entrevistados, 80% afirmaram usar o WhatsApp para este fim. Em termos de
preferéncias dos clientes, 78% dos entrevistados consideram o aplicativo ideal para esclarecer
duvidas e solicitar informagodes, 69% para suporte técnico e 53% para receber promogdes.

Outra pesquisa realizada pelo IBGE (2022), apresenta que 155,2 milhdes de brasileiros
acima de 10 anos tém celular para uso pessoal, correspondendo a 84,4% dessa faixa etaria em
2021 .

Diante da crescente importancia do atendimento ao cliente, uma abordagem adequada
pode nao s6 fidelizar um consumidor, mas também estreitar lagos, criando uma relacéo de
confianga e lealdade entre empresa e cliente. No Brasil, um pais de dimensdes continentais
e diversidade de habitos, € essencial identificar os meios de comunica¢do mais eficazes para

11

atingir esse objetivo. As pesquisas citadas apontam que o WhatsApp se destaca, atualmente,
como a principal ferramenta de comunicag¢do entre os brasileiros, refletindo sua praticidade e
imediatismo.

Vendo essa tendéncia, foi notada uma chance: criar um aplicativo de atendimento ao
cliente que se integre ao WhatsApp. Esta solu¢do nao apenas capitalizaria na popularidade do
aplicativo, mas também incluiria recursos adicionais para aprimorar a interagao.

Sheth, Jain e Ambika (2020) comentam que um aplicativo de suporte pode auxiliar os
consumidores a obterem a assisténcia de que necessitam com mais facilidade e celeridade.
Isso conduz a um aumento dos niveis de satisfagdo com o produto ou servigo e auxilia na fideli-
zacao dos clientes. Eles também concordam com Muller (1991) que afirma que uma assisténcia
bem estruturada pode tornar uma organizagao diferente das outras do mesmo segmento e pro-
porcionar uma vantagem competitiva. Por fim, Chen e Popovich (2003) mencionam o auxilio na
coleta de dados, onde um aplicativo de suporte pode recolher informagdes das dividas, proble-
mas e opinides dos clientes. Estas informacdes podem ser aplicadas para o aperfeicoamento
do produto ou servico, identificacdo de tendéncias e padrdes, e decisGes tomadas com base
em dados.

Resumindo, tal aplicativo tem a capacidade de promover uma melhor experiéncia ao
cliente, otimizar processos, entregar atendimento sob medida e proporcionar uma vantagem no
mercado.

A crescente popularidade do WhatsApp entre os brasileiros ressalta sua importancia
estratégica para negocios.

Com a evolugéo constante da internet e das ferramentas de desenvolvimento, é oportuno
criar uma aplicacao web que auxilie os profissionais a oferecer suporte via WhatsApp, tendo em
vista os beneficios ja mencionados.

1.1 Objetivos

A seguir, serdo demonstrados os objetivos deste projeto:

1.1.1 Objetivo geral
Desenvolver um aplicativo de atendimento ao consumidor que utiliza troca de mensa-

gens, recursos de administracao e distribuicdo das conversas com os clientes entre os membros
da equipe de suporte.

1.1.2 Objetivos especificos

Para atingir o objetivo geral sdo necessarios os seguintes objetivos especificos:

Levantar requisitos funcionais e nao funcionais do aplicativo.
Modelar o software.
Implementar o software utilizando Node.js e Vue.js.

Validar aplicacao utilizando o método teste unitario.

12

13

2 REFERENCIAL TEORICO

No presente capitulo, serdao apresentados e discutidos os conceitos, tecnologias e ferra-
mentas que fundamentam este trabalho.

2.1 Atendimento ao consumidor

Bodet (2008) destaca que a fidelidade dos clientes é essencial em estudos de marke-
ting e estratégias de gestao, principalmente devido a acirrada concorréncia nas industrias de
servicos. O foco central é a relacdo cliente-empresa, que é vital na estratégia de marketing
de relacionamento com o consumidor. J& Posselt e Gerstner (2005) argumentam que melho-
rar a satisfacdo do cliente potencializa sua fidelidade, impactando positivamente os lucros das
empresas.

Uma maneira de avaliar a satisfagcdo de um cliente com um servico € pedir para ele
compara-lo com um padrao ou expectativa que tinha antes de usufrui-lo (OLIVER, 1977; OLI-
VER, 1993; POSSELT; GERSTNER, 2005). O surgimento da Internet auxiliou estabelecimentos
de venda on-line a automatizarem diversos servigos, o que dispensou a necessidade de uma
comunicacao pessoal entre as pessoas, uma vez que passou a ser possivel fazer tudo por um
computador (POSSELT; GERSTNER, 2005).

Estudos anteriores em ciéncia do comportamento indicam que o lapso de tempo apés a
prestacdo de um servigo pode interferir na opiniao de um cliente a respeito dele. Quando é feito
uma analise a satisfacdo geral com o servico, os clientes podem notar uma maior relevancia
para os servicos pds-venda do que para os pré-venda devido a um “efeito de finalizacdo do
servigo” ou “efeito de recéncia”. Um efeito de recéncia € quando um individuo da a informagao
vista depois um peso maior do que a vista antes (POSSELT; GERSTNER, 2005).

Os clientes terado a oportunidade de experimentar dois tipos diferentes de servigos: um
que ocorre pré-venda e outro pés-venda. Uma maneira pratica de diferencia-los é examinar
as dimensoes do servico antes de finalizar a aquisicao e apés receber o produto (POSSELT;
GERSTNER, 2005).

Foi estimado que a satisfagcao pds-venda do cliente com a intengéo de voltar a comprar
€ dez vezes mais relevante do que a satisfacao pré-venda com a intengao de voltar a comprar,
e que a satisfacdo pds-venda, em geral, € quinze vezes mais relevante do que a pré-venda.
Diante desses efeitos de recéncia, foi recomendado que os estabelecimentos de venda on-line
aumentem os recursos disponiveis no processo pés-venda para aumentar a hipétese do cliente
realizar uma nova compra e aumentar as avaliagdes positivas gerais em relacdo ao produto
(POSSELT; GERSTNER, 2005).

Os itens mais relevantes no processo pds-venda para concretizar uma nova compra sao
(POSSELT; GERSTNER, 2005):

14

1. O produto satisfez as expectativas;

2. A qualidade do atendimento ao consumidor;
3. A entrega do produto no tempo esperado;
4. A disponibilidade do produto desejado.

Em relagdo a avaliacao do servico em geral, os itens sdo os mesmos, mas a sua relevancia é
diferente (POSSELT; GERSTNER, 2005):

1. A entrega do produto no tempo esperado;
2. O produto satisfez as expectativas;

3. Atendimento ao consumidor;

4. A disponibilidade do produto desejado.

O atendimento ao consumidor é formado pelas tarefas de entrega, instalagdo, manu-
tencéo, financiamento, solugao de duvidas e tratamento de queixas que os clientes podem ter
depois de uma aquisicdo e durante o uso de um produto ou servigo (SHETH; JAIN; AMBIKA,
2020).

Um dos principios de gestao de qualidade, o de foco no cliente, considera a comunicagao
com os clientes uma das agdes possiveis e apresenta uma série de beneficios relacionados a
mesma. Como é possivel observar, ha quatro acdes possiveis que sao dedicadas ou incluem
o atendimento ao cliente, sendo elas (ASSOCIAQAO BRASILEIRA DE NORMAS TECNICAS,
2015):

« Ter ciéncia das necessidades e expectativas atuais e futuras dos clientes.

» Planejamento, projeto, desenvolvimento, produgéo, entrega e suporte a produtos e ser-
vicos para atender as necessidades e expectativas dos clientes.

» Acompanhar e supervisionar a satisfacao do cliente e tomar as a¢des adequadas;
» Gerir as relagdes com os clientes ativamente forma para alcangar o sucesso.

Os beneficios mostrados confirmam o que as companhias suspeitavam sobre a melhoria
da satisfacdo do cliente, sendo um aumento do valor para o consumidor, da sua satisfacédo, da
fidelidade, e da hipétese de repeticdo de negdcios. Além disso, as empresas tém uma melhoria
na reputagdo, uma ampliagdo da base de clientes e um aumento da receita e participagdo no
mercado (ASSOCIACAO BRASILEIRA DE NORMAS TECNICAS, 2015).

15

2.2 Aplicativos de mensagens instantaneas

Aplicagbes de conversa, também chamados de aplicativos de mensagens instantaneas.
Sao sistemas que permitem a comunicacao em tempo real entre os usuarios. Eles permitem a
troca de mensagens, geralmente em texto, imagens, audios ou videos, com um ou mais usuarios
(PCMAG, 2023b).

Podem ser utilizados no trabalho ou na vida pessoal, além de poderem ser usados
em uma grande variedade de dispositivos, como celulares, tablets, notebooks, e computadores
desktops (META, 2021). Alguns deles tém recursos extras, como chamadas de voz e de video,
conversas em grupo, op¢cao de compartilhamento de arquivos e conexao com outros servidores
(MAIZE, 2020).

Sao divididos em dois grupos principais: aplicagées de conversagao independentes ou
integradas com outro sistema. As independentes foram criadas apenas para trocar mensagens e
podem oferecer as outras funcionalidades mencionadas acima. As integradas s@o construidas
a partir de outro servigo, como plataformas de midias sociais ou sistemas de e-mail (MAIZE,
2020).

Eles sdo uma forma conveniente e eficiente de se comunicar com outros em tempo real,
tanto em suas vidas pessoais quanto profissionais (SALGADO, 2022).

A histéria dos aplicativos de conversa comega nos anos setenta, quando o primeiro
sistema de conversacao chamado Talkomatic foi criado no computador PLATO na Universidade
de lllinois. Era uma sala de conversagao que possibilitava a cinco pessoas conversarem entre si
em tempo real. Talkomatic foi inovador para a sua época por ser a primeira vez que as pessoas
puderam se comunicar entre si em tempo real via uma rede de computadores (WOOLLEY,
1994).

Em 1988, o Internet Relay Chat (IRC) foi criado, permitindo que as pessoas conversas-
sem em tempo real através de uma conexdo de servidores (REID, 1991). Os usuarios podiam
criar salas e convidar outros para participarem (SIMPSON, 2000). Ele se popularizou nos primei-
ros dias da internet e, ao longo dos anos, construiu 0 caminho para os aplicativos de conversas
modernos, inovando com diversas funcionalidades.

Desenvolvido em 1996, ICQ permitiu aos seus usuarios enviar mensagens entre eles,
e em 1997 atingiu a marca de 1 milhao de usuarios (TECHTUDO, 2019). Apés isso, surgiram
outros competidores no mercado, que marcam a histéria da Internet e a popularizagdo desse
tipo de comunicagéo. Alguns deles sao o AOL Instant Messenger (AIM), o MSN Messenger, e 0
Yahoo Messenger.

Nos primeiros anos do novo milénio, as redes sociais comegaram a surgir e a incorporar
a tecnologia de troca de mensagens em seus novos sistemas. O Facebook langou em 2011 o
Facebook Messenger (MESSEGER, 2018) e o Twitter introduziu as mensagens diretas no ano
de 2013 (PEREZ, 2015). Isso possibilitou que os usuarios se comunicassem diretamente nas

16

redes sociais. Em anos recentes, aplicativos como WhatsApp', WeChat? e Line ® conseguiram
manter a marca de centenas de milhares de usuarios no mundo todo, tornando-os uma parte
importante de como as pessoas se comunicam diariamente (BAROT; OREN, 2015).

2.2.1 WhatsApp

Como comentado anteriormente, 0 WhatsApp tem dominio sobre 0 mercado mundial e
nacional, tendo mais de cinco bilhdes de downloads, somente na Google Play Store (GOOGLE
PLAY STORE, 2023). O aplicativo esta diariamente recebendo aproximadamente 100 bilhdes de
mensagens (SINGH, 2020), levantando a questao sobre quais tecnologias, designs do sistema,
ou arquitetura dos servidores conseguem suportar tamanha demanda de troca de dados.

No que diz respeito a interface dos usuarios, presente em aparelhos iOS, Android, desk-
top e web, as seguintes tecnologias sao usadas em cada uma dessas plataformas (CRESSLER,
2021):

Android: Java;

iOS: Swift;

Aplicativo Web: JavaScript/HTML/CSS;

Aplicativo Mac Desktop: Swift/Objective-C;

Aplicativo PC Desktop: C/C#/Java;

Outro fator relevante a ser considerado, além das linguagens de programacgao, é o banco
de dados. O WhatsApp utiliza o SQLite, um banco de dados independente, autbnomo e rela-
cional que pode ser usado pelo aplicativo sem ser instalado no dispositivo. Para evitar custos
adicionais, sejam financeiros ou computacionais, ao invés de baixar as conversas da nuvem
toda vez que o servico € iniciado, 0 WhatsApp utiliza esse banco para guardar as mensagens
localmente (CRESSLER, 2021).

No lado do servidor, considerando-se o0 conhecimento que esté disponivel para o pablico,
o design do sistema é como descrito a seguir (CRESSLER, 2021):

+ Erlang é a linguagem de programagao principal;
» FreeBSD ¢ o sistema operacional;
» Ejabberd é a aplicacao servidor;

+ BEAM € a maquina virtual criada em Erlang;

' WhatsApp: https://www.whatsapp.com

2 WeChat: https://www.wechat.com
3 Line: https://line.me/en/

17

» Mnesia é o banco de dados criado em Erlang;
* YAWS ¢ o servidor web de multimidia deles.

O aplicativo usa um protocolo diferente para se comunicar com os clientes, uma versao
modificada XMPP. O protocolo abre um socket SSL nos clientes para os servidores do What-
sApp, e todas as mensagens enviadas para ele sdo colocadas em uma fila nos servidores até
que o cliente as abra ou reconecte nesse socket para recebé-las. Apds o cliente adquirir a
mensagem com éxito, uma confirmagao de sucesso € enviada novamente para o servidor. O
servidor envia isso para o remetente original, informando que aquela mensagem foi recebida e

adicionando as marcas de sele¢do ao lado da mensagem enviada (CRESSLER, 2021).

2.3 Processo de Desenvolvimento

Existem diversas maneiras de criar um aplicativo para atender as demandas ou neces-
sidades de um determinado problema. Em geral, cada uma dessas maneiras segue 0S mesmos
passos, a principal diferenca € a quantidade e ordem de vezes que eles sdo executados ao
longo do processo de constru¢do (BUDGEN, 2003).

Alguns exemplos s&o o processo de desenvolvimento linear, incremental, reativo e ori-
entado a retuso (BUDGEN, 2003; SOMMERVILLE, 2011). A utilizagao desses formatos nao é
restrita a um s, e muitas vezes, eles sao usados em conjunto, especialmente para a criacado de
sistemas complexos (SOMMERVILLE, 2011).

O linear é mais indicado para projetos bem estruturados e com um longo prazo de en-
trega (BUDGEN, 2003). Este formato contempla as atividades basicas do ciclo de especifica-
cao, desenvolvimento, validacao e evolucao, representando cada uma como etapas diferen-
tes, como: especificagdo de requisitos, projeto de software, implementacao, testes, entre outros
(SOMMERVILLE, 2011).

O formato incremental é usado em projetos que ainda precisam demonstrar a sua vi-
abilidade, estabelecer uma posi¢cdo no mercado de forma rapida, ou explorar um mercado ja
existente. Os projetos que usam esse formato seriam aqueles concebidos como um pacote de
aplicacoes, como software de escritério, jogos, e sistemas operacionais. Além também daque-
les que precisam de uma interagédo proxima dos usuarios finais durante o seu desenvolvimento,
sendo isso o principal motivo pela escolha deste formato para o projeto a ser construido neste
trabalho (BUDGEN, 2003).

O reativo, que a evolucao do sistema consiste principalmente na resposta do que o de-
senvolvedor considera como necessaria. Muitos projetos de codigo-livre e sites sédo construidos
por esse método (BUDGEN, 2003).

Por fim, tem-se o orientado a relso. Esta abordagem é fundamentada na existéncia

de um consideravel numero de componentes que podem ser reaproveitados. O processo de

18

formacdo do sistema se concentra na unido desses elementos em um sistema existente, ao
invés de partir do zero (SOMMERVILLE, 2011).

Como dito anteriormente, o formato de processo que sera utilizado neste projeto sera o
incremental. A seguir, 0 processo sera descrito com mais clareza para elucidar a sua utilizagao
e detalhes.

2.3.1 Desenvolvimento Incremental

Uma das principais deficiéncias do processo de desenvolvimento linear é a necessidade
de identificar e resolver logo no comeg¢o do projeto os itens necessérios para o futuro sistema.
Isso é inaplicavel em diversos casos, e, apesar de técnicas sofisticadas para determinar esses
requisitos, existem muitas duvidas e possiveis lacunas (BUDGEN, 2003).

Outras areas da engenharia resolvem isso criando um protétipo para analisar o problema
e possiveis solugdes. Contudo, quando se pensa em um aplicativo, esse conceito € mais dificil
de ser definido com clareza. Para outras areas da engenharia de software, um protétipo é a sua
primeira versdo, ou o formato de um modelo que serd usado para fins de escala (BUDGEN,
2003).

2.3.1.1 Histéria

A metodologia foi inicialmente desenvolvida por Walter Shewhart em 1930, o pioneiro
do ciclo “Planejar, Fazer, Verificar, Agir“. Foi aplicada em projetos como o jato X-15 nos anos
1950 e o Project Mercury da NASA nos anos 1960 (LARMAN; BASILI, 2003). Larman e Basili
encontraram a primeira mengao do método em um relatério de 1968 de Brian Randell e FW.
Zurcher na IBM. No ano seguinte, M.M. Lehman divulgou essa metodologia em um relatério
interno para a geréncia da IBM. (LARMAN; BASILI, 2003).

2.3.1.2 Aplicacdo na engenharia de software

No que diz respeito a um aplicativo, onde a criacdo do produto final € apenas uma
questao de fazer copias, essas analogias sao invalidas. Na producao deles, é provavel que o
prototipo seja o produto para o futuro, e ndo tem um conceito semelhante ao do modelo para a
escala (BUDGEN, 2003).

Apesar de a prototipagem diferir na constru¢gdo de um sistema, a raz&o para a constru-
cao de um permanece a mesma: protoétipos sao criados para explorar uma ideia de forma mais
integral do que outras maneiras (BUDGEN, 2003).

O aplicativo é aperfeicoado gradualmente, e os requisitos sado alterados com o tempo,
ficando mais nitidos com o uso. Nesse sentido, modificou-se o sistema para se adequar a eles.

19

Dessa forma, concebeu-se o protoétipo e, aos poucos, moldou-se ele até se chegar a versao
final do produto (BUDGEN, 2003).

O desenvolvimento incremental € fundamentado no conceito de se elaborar uma versao
inicial, submeté-la a avaliagdo dos usuarios e prosseguir com a criacao de diversas outras até se
chegar a um sistema satisfatério. As tarefas de especificagao, desenvolvimento e validagao sao
executadas em rotatividade, sempre com um rapido retorno entre elas. Ao criar um programa
de forma gradual, € mais econdmico e pratico fazer alteracées no programa enquanto ele esta
sendo criado (SOMMERVILLE, 2011). A Figura 1 ilustra o ciclo do desenvolvimento incremental:

Figura 1 - llustracado do desenvolvimento incremental

Atividades
simultineas

Y

Especificagdo Versdo inicial

v

Versdes
intermediarias

Descrigdo do

Desenvolvimento
esbogo

r Y

Validagio Versdo final

Y

Fonte: Adaptado de (SOMMERVILLE, 2011).

Cada nova versdo do sistema tem uma funcionalidade importante para o cliente. As
primeiras versdes, muitas vezes, apresentam a principal funcionalidade ou aquela que é mais
urgente. Ou seja, o cliente pode experimentar o sistema numa etapa preliminar do processo de
criagao para verificar se oferece o que foi pedido. Em caso de discordancia, apenas a funci-
onalidade desenvolvida tera que ser modificada naquele instante e, eventualmente, uma nova
caracteristica precisara ser estabelecida para os incrementos seguintes (SOMMERVILLE, 2011;
SHERMAN, 2015).

E possivel criar um sistema gradativamente e mostra-lo para os clientes, sem precisar
efetivamente instala-lo e coloca-lo em funcionamento no ambiente do cliente. A entrega e a im-
plantacdo gradativas significa que o software é utilizado em tarefas rotineiras. Isso nem sempre
€ viavel, pois as experiéncias com o aplicativo podem interferir nos procedimentos de trabalho
normais (SOMMERVILLE, 2011).

20

2.3.1.3 Entrega Incremental

Entrega incremental € uma forma de desenvolvimento de aplicagbes onde os usuarios
podem utilizar, identificar e classificar a importancia das funcionalidades de uma nova aplicagao
em um ambiente operacional. A atribuigcao de servigos as novas funcionalidades depende da
ordem de prioridade dos servigos (SOMMERVILLE, 2011).

Primeiramente, identifica-se quais mddulos tém maior relevancia para o uso. Apos esta-
belecer as prioridades, é possivel elaborar uma série de versdes do sistema que contenham um
subconjunto das funcionalidades. Dessa forma, a primeira versao ja concordara com o que foi
estabelecido. Nesse periodo, podem surgir algumas andlises, adicdes ou mudancgas de acrés-
cimos futuros (SOMMERVILLE, 2011).

Ao finalizar esse desenvolvimento, o cliente inicia o uso das funcionalidades e, caso seja
uma modificagdo posterior a primeira, verifica a sua compatibilidade com o resto da aplicacao.
Os clientes podem testar o aplicativo, o que 0s ajuda a compreender suas necessidades para
futuras melhorias (SOMMERVILLE, 2011). A Figura 2 mostra o ciclo da metodologia:

Figura 2 — llustracao da entrega incremental

Desenvolver
incrementos de
sistema

Atribuir requisitos
aos incrementos

Projetar arquitetura
de sistema

Definir esbogo
de requisitos

-~

Sistema
incompleto?

Validar
incrementos

Implementar
incrementos

Integrar
incrementos

Validar sistema

Sistema
completo?

Y

Sistema final

Fonte: (SOMMERVILLE, 2011).

A entrega incremental apresenta diversas vantagens (SOMMERVILLE, 2011):

* Os clientes podem usar os primeiros aprimoramentos como protétipos e obter experi-
éncia, indicando seus requisitos para os aperfeicoamentos futuros do sistema.

21

» Os clientes nao precisam esperar até que todo o produto esteja finalizado para obter
beneficios dele, pois, a partir da primeira versao, ja podem utilizar as fungées mais
criticas do sistema.

» Se mantém os beneficios do desenvolvimento incremental, o que deve facilitar a agre-

gacao das alteragbes no sistema.

* Quanto mais os servigos forem adicionados e, logo apds, mais integrados, mais as
funcoOes criticas serdo testadas. Isso significa que é menos provavel que os clientes
encontrem defeitos no software das partes essenciais do sistema.

Contudo, suas desvantagens sdo (SOMMERVILLE, 2011):

» A maioria dos sistemas necessita de um grupo de funcionalidades basicas, usadas por
diferentes sessdes do programa. Como os requisitos nao sao explicitados até que uma
versao possa ser construida, pode ser dificil identificar recursos em comum, necessa-

rios para todas as melhorias.

» O desenvolvimento iterativo também encontra aversdo quando € construido com in-
tencdo de substituir outro. Os usuarios desejam todas as funcionalidades do sistema
anterior e, em muitos casos, ndo estao dispostos a testar um novo sistema que esta

incompleto. Sendo assim, é dificil obter feedbacks relevantes dos mesmos.

» O processo iterativo € caracterizado pelo desenvolvimento da especificagdo em con-
junto com o software. Todavia, isso gera problemas com o modelo de aquisi¢cbes de
diversas companhias, no qual a descricdo completa do sistema é parte do acordo de
criacao do aplicativo.

» Na abordagem incremental, o aplicativo ndo é totalmente especificado até sua ver-
séao final. Isso pode exigir que clientes, como agéncias governamentais, facam novos

acordos para se adaptar as mudancas.

Para resolver esses problemas e obter alguns dos beneficios do desenvolvimento incre-
mental, pode-se usar um processo no qual um protétipo de sistema é criado de forma iterativa
e usado como uma plataforma para experimentos com os requisitos € projeto do sistema. Com
a experiéncia obtida com o protétipo, pode-se, entao, chegar a um acordo em relagao aos re-
quisitos finais (SOMMERVILLE, 2011).

2.3.2 Engenharia de requisitos

Sommerville (2011) explica que requisitos de sistema especificam as fungbes, servi-
cos e limitagdes de um sistema para atender as necessidades do cliente. “Esse processo de

22

identificacao, analise, documentacao e verificacdo é conhecido como engenharia de requisitos.”
(SOMMERVILLE, 2011).

Larman (2001) informa que os requisitos sdo as fungdes e condi¢gdes que o sistema e
o projeto como um todo devem atender. O desafio é identificar, comunicar e documentar essas
necessidades de forma clara para o cliente e a equipe de desenvolvimento.

Ambos autores afirmam que é comum a separacao dos requisitos em duas definicoes
generalizadas:

» Requisitos funcionais: Sommerville (2011) diz que eles descrevem 0s servicos que
o sistema deve oferecer, sua resposta a entradas especificas e seu comportamento
em situacoes particulares. Eles também podem definir o que o sistema nao deve fazer.
Larman (2001) explica que eles séo identificados e documentados no Modelo de Casos
de Uso e na lista de caracteristicas do sistema, que faz parte do artefato Visao.

» Requisitos ndo-funcionais: Sommerville (2011) afirma que eles sao limitagdes que afe-
tam o sistema inteiro, como tempo de resposta, regras de desenvolvimento e normas
a seguir. Eles diferem dos requisitos funcionais, que geralmente se aplicam a fungées
ou servicos especificos do sistema. Larman (2001) expressa que eles podem ser do-
cumentados nos casos de uso relacionados ou no artefato de Especificagdoes Suple-
mentares.

Sommerville (2011) reconhece que a distingao entre diferentes tipos de requisitos é in-
certa, ao contrario do que sugerem essas definigcdes. Ele exemplifica com um requisito sobre
protecao, como limitar o acesso a usuarios autorizados, que pode inicialmente parecer nao fun-
cional. Porém, ao explora-lo mais, é possivel considera-lo como um requisito funcional, como a

implementagéo de recursos de autenticagao.

2.3.2.1 Elicitacédo e analise de requisitos

Ap0s os esclarecimentos sobre as definicoes de requisitos e suas classificagoes gerais,
€ necessario ver como levantar e analisar os requisitos para o sistema. Sommerville (2011)
explica que nessa atividade, os engenheiros de software colaboram com clientes e usuarios
para coletar informagdes sobre o escopo da aplicagao, servigos necessarios, desempenho e
limitagbes de hardware.

Sommerville (2011) acrescenta que esta fase do desenvolvimento pode incluir diversos
tipos de pessoas. Ele apresenta o conceito de um stakeholder ou parte interessada, que €
“guem tem alguma influéncia direta ou indireta sobre os requisitos o sistema.” (SOMMERVILLE,
2011, p.70). Sommerville (2011) também diz que as partes interessadas pode envolver usuarios
finais, membros da organizagéo afetados pelo sistema, engenheiros de sistemas relacionados,
gerentes de negdcios, especialistas de dominio e representantes sindicais.

23

Sommerville (2011) informa algumas dificuldades que € possivel encontrar nesta fase

do desenvolvimento, que sao elas:

Partes interessadas geralmente ndo tém clareza sobre o que querem do sistema e
podem fazer pedidos inviaveis.

» Engenheiros podem ter dificuldade em entender requisitos expressos em termos espe-
cificos do dominio do cliente.

+ Diferentes partes interessadas tém requisitos distintos, e pode haver conflitos e seme-
lhancgas entre eles.

 Fatores politicos, como a influéncia dos gerentes, podem afetar os requisitos do sis-

tema.

» O cenario econdmico e empresarial é dindmico, levando a mudangas e novos requisitos
ao longo do processo de analise.

2.3.2.2 Descoberta de requisitos

Esta é fase do desenvolvimento que é levantado o que as partes interessadas acredi-
tam ser necessario para o sistema funcionar. Ela pode decorrer de diversas maneiras, como
entrevistas, criacées de cenarios, observagdo do comportamento das partes interessadas com
outros sistemas que serdo integrados ou substituidos pelo novo. Sommerville (2011) explica
essas diferentes formas, que séao:

» Entrevistas: a equipe questiona as partes interessadas sobre o sistema atual e o que
sera criado. Essas conversas revelam os requisitos necessarios. Existem duas abor-
dagens que sao as entrevistas fechadas, com perguntas predefinidas ou as entrevistas
abertas, onde a equipe explora variados tépicos para entender melhor as necessidades
das partes interessadas.

» Cenarios: As pessoas costumam entender melhor exemplos praticos do que concei-
tos abstratos. Elas podem avaliar cenarios de interagcdo com um sistema, fornecendo
ideias para os engenheiros de requisitos definirem os requisitos do sistema. Cenarios
ajudam a detalhar requisitos gerais através de exemplos de interacdes especificas.
Cada cenario foca em um conjunto limitado de interagées, fornecendo informagdes

variadas e detalhadas sobre o sistema.

» Casos de uso: Um caso de uso nomeia a interagao e identifica os atores envolvidos,
fornecendo detalhes adicionais sobre a interacdo com o sistema. Larman (2001) acres-
centa que eles ajudam a identificar e documentar requisitos funcionais através de nar-

rativas que mostram como o sistema atende aos objetivos das partes interessadas.

24

+ Etnografia: € uma técnica onde um analista observa o ambiente de trabalho para enten-
der os processos e identificar requisitos do sistema. Ele foca nas tarefas reais e rotinas
diarias, permitindo descobrir requisitos implicitos que podem nao ser capturados por
processos formais.

Diferentes fontes de requisitos podem ser vistas como perspectivas distintas do sistema,
cada uma destacando um conjunto especifico de requisitos. Embora essas perspectivas te-
nham particularidades, elas frequentemente se sobrepdem e trazem requisitos comuns. Essas
perspectivas podem ser usadas para organizar a coleta e documentagao dos requisitos.

2.3.2.3 \Validacéo de requisitos

A validagdo de requisitos confirma se o sistema atende as reais necessidades do cliente
e identifica problemas antecipadamente para evitar custos elevados de correcdo mais tarde.
Sommerville afirma que ela “é importante porque erros em um documento de requisitos podem
gerar altos custos de retrabalho quando descobertos durante o desenvolvimento ou apés o sis-
tema ja estar em servigo.” (SOMMERVILLE, 2011, p.76). Erros em requisitos sédo especialmente
caros de corrigir, pois usualmente exigem mudanc¢as no projeto e na implementacéo do sistema,
além de retestes.

Sommerville (2011) descreve alguns diferentes tipos de verificagdes para o processo de
validacéo de requisitos, que séo:

Validade: Analise se as fungdes necessarias estao realmente refletidas nos requisitos,
considerando que diferentes partes interessadas podem ter diferentes necessidades.

» Consisténcia: Certifique-se de que os requisitos no documento ndo se contradizem.

Completude: Verifique se o documento inclui todas as fungdes e restricoes desejadas
pelo usuério.

» Realismo: Com base na tecnologia disponivel, no orcamento e no cronograma, con-

firme se os requisitos sao viaveis.

Verificabilidade: Os requisitos devem ser claros o suficiente para permitir testes que

confirmem se o sistema atende as especificacoes.

E demonstrado algumas técnicas aplicaveis para certificar que os requisitos listados sao
validos para sistema que esté sendo criado, que incluem:

» Revisbes: Uma equipe examina os requisitos em busca de erros e inconsisténcias.

* Prototipagdo: Um modelo funcional do sistema é apresentado aos usuarios e clientes
para avaliar se ele atende as necessidades.

25

» Casos de Teste: Criar testes com base nos requisitos pode revelar problemas. Se for
dificil projetar um teste, provavelmente o requisito também sera dificil de implementar
e deve ser revisto.

2.3.2.4 Gerenciamento de requisitos

Requisitos de software em sistemas grandes estdo sempre em fluxo devido a natureza
indefinida dos problemas que tentam resolver. “Uma razao para isso é que esses sistemas geral-
mente sdo desenvolvidos para enfrentar os problemas 'maus’— problemas que ndo podem ser
completamente definidos. (SOMMERVILLE, 2011, p.77). A medida que as partes interessadas
ganham novas perspectivas, os requisitos precisam ser atualizados.

Uma vez que o sistema estd em uso, novos requisitos surgem com base na experiéncia
do usuario e nas mudancas no ambiente técnico e de negécios. Isso inclui novos hardwares,
regulamentos e mudancgas nas prioridades empresariais.

Normalmente, afirma Sommerville (2011), os pagadores e 0s usuarios finais do sistema
tém requisitos diferentes, frequentemente conflitantes. “Clientes do sistema impdem requisitos
devido a restricdes orcamentarias e organizacionais, os quais podem entrar em conflito com os
requisitos do usuario fina" (SOMMERVILLE, 2011, p.78). Com o tempo, o sistema pode precisar
de ajustes para equilibrar essas necessidades.

“O gerenciamento de requisitos € o processo de compreensdo e controle das mudancas
nos requisitos do sistema.” (SOMMERVILLE, 2011, p.78). Isso envolve um processo formal que
comeca durante a fase de elicitacdo e continua através do ciclo de vida do projeto.

2.3.3 Casos de uso

“Escrever casos de uso — histérias sobre a utilizagdo de um sistema — é uma excelente
técnica para entender e descrever requisitos.” (LARMAN, 2001, p.45). Casos de uso sdo um
roteiro de como cada requisito levantado para o sistema ocorrerd, incluindo os seus atores, seu
fluxo basico, suas extensdes. Existem diferentes maneiras de representar um caso, € cada uma
delas ira possuir um nivel de detalhamento.

Segundo Larman (2001), eles sdo um mecanismo para ajudar a manter tudo simples
e compreensivel para todas as partes interessadas. Informalmente, eles sao histérias de como
utilizar um sistema para atingir objetivos. Fowler (2003) também da um descricao parecida sobre
os casos de uso, ele diz que eles funcionam descrevendo as interagdes tipicas entre os usuarios
de um sistema e o préprio sistema, fornecendo uma narrativa de como um sistema é utilizado.
Sommerville (2011) diz que um caso de uso esbocga as expectativas do usuario em relagéo a
um sistema. Cockburn (2001) explica que um caso de uso € um acordo sobre como um sistema
deve agir, envolvendo todas as partes interessadas.

26

Um caso de uso captura um contrato entre as partes interessadas
de um sistema sobre seu comportamento. O caso de uso descreve
0 comportamento do sistema sob varias condigbes enquanto res-
ponde a uma solicitacdo de uma das partes interessadas, chamada
de ator principal. O ator principal inicia uma interacdo com o sistema
para alcancar algum objetivo. O sistema responde, protegendo os in-
teresses de todas as partes interessadas. Diferentes sequéncias de
comportamento, ou cenarios, podem se desenrolar, dependendo das
solicitagdes especificas feitas e das condigbes que cercam essas so-
licitacdes. O caso de uso relne esses diferentes cenarios. (COCK-
BURN, 2001, p. 15).

Larman (2001) explica que os casos de uso sao requisitos; principalmente, sdo requisitos
funcionais que indicam o que o sistema fara. E como uma promessa de que o sistema, seja ele
um site, aplicativo ou algo diferente, fard essas tarefas especificas. Fowler (2003) concorda
afirmando que os casos de uso sdo uma técnica para capturar os requisitos funcionais de um
sistema.

2.3.3.1 Historia

Larman (2001) conta que foi Ivar Jacobson que introduziu o conceito de casos de uso
para descrever requisitos funcionais em 1986 e teve grande impacto devido a simplicidade e
utilidade da ideia, e conclui que Alistair Cockburn aprofundou o tema, fornecendo um guia com-
pleto sobre como escrever casos de uso eficazes, iniciando seu trabalho em 1992.

Fowler (2003) concorda com Larman (2001), dizendo que Ivar Jacobson originalmente
popularizou os casos de uso, porém o livro de Cockburn se tornou o livro padrdo sobre o as-
sunto.

Por fim Cockburn (2001) traz uma visao de quem presenciou a cria¢do, informando que
Ivar Jacobson inventou casos de uso no final dos anos 1960 enquanto trabalhava em sistemas
de telefonia na Ericsson. Duas décadas depois, Jacobson os apresentou a comunidade de pro-
gramacao orientada a objetos, onde foram reconhecidos por preencher uma lacuna significativa

no processo de desenvolvimento.

2.3.3.2 Partes do corpo de um caso de uso

Existem diversos componentes que é possivel acrescentar em um caso de uso, sendo
que alguns tem prioridade de definicAo maior do que os outros. Larman (2001) reformula as
partes que foram apresentadas por Cockburn (2001) na seguinte forma;

» Atores: Podem ser qualquer entidade com comportamento, incluindo o préprio sistema
em discussao, quando ele interage com outros sistemas. Atores tém obijetivos e utili-

27

zam aplicativos para alcanga-los. Eles podem ser pessoas, organizagdes, softwares ou
maquinas.

+ Ator principal: A pessoa ou sistema que inicia a interacao para atingir um objetivo.

+ Lista de Partes Interessadas e Interesses: Um rol de quem se importa com o compor-
tamento do sistema e o que eles querem dele.

» Cenério de Sucesso Principal: O fluxo tipico que atende as necessidades das partes
interessadas, geralmente sem desvios condicionais.

» Extensdes: Outros cenarios possiveis, incluindo sucesso e falha.
» Pré-condicdes: Condigcdes que ja devem ser verdadeiras antes de comecar o cenario.

» Garantia de Sucesso: O que precisa ser verdadeiro quando o caso de uso é comple-
tado com sucesso, atendendo a todos os interessados.

» Requisitos Especiais: Qualquer requisito nao funcional ou restricdo especifica a um
caso de uso, como desempenho ou confiabilidade.

» Frequéncia de ocorréncia: Intervalo de tempo em que o processo sera repetido.

« Lista de Variagbes de Tecnologia e Dados: Notas sobre diferentes maneiras técnicas
de fazer algo, mas sem mudar o objetivo.

2.3.3.3 Formatos de casos de uso

“Casos de uso sao escritos em diferentes formatos, dependendo da necessidade.” (LAR-
MAN, 2001). Larman (2001) e Cockburn (2001) explicam que a escolha de como os casos de
usos serao escritos depende de qual € o objetivo deles em relagdo a apresentacao do projeto.
Larman conclui que o essencial é escrever os detalhes do cenario de sucesso principal e suas
extensdes, de alguma forma. Aqui estao as formas descritas por Cockburn (2001) e por Larman
(2001):

» Formato completamente vestido: € uma forma detalhada de apresentar casos de uso.
Ele utiliza uma Unica coluna de texto, sem tabelas, e lista os passos em uma sequéncia
numerada. Esse formato evita o uso de condicionais como “se” (“if statements®). Além
disso, na secdo de extensdes, utiliza uma convengédo de numeragdo que combina di-
gitos e letras para identificar sub passos ou alternativas (por exemplo, 2a, 2al, 2a2, e
assim por diante).

» Forma casual: formato de paragrafo informal. O primeiro paragrafo foca no cenario de
sucesso principal e os préximos paragrafos abordam extensoes.

28

» Tabela de uma coluna: € o formato completamente vestido, porém inserida em uma
tabela.

» Tabela de duas colunas: Rebecca Wirfs-Brock criou o conceito de “conversagao®, que
se destaca visualmente pelo uso de duas colunas. As acdes do ator principal ficam na
coluna da esquerda e as do sistema na da direita. Esse formato é usado para preparar
o design da interface do usuario, podendo conter mais detalhes sobre os movimentos
do usuario.

 Estilo RUP: O Processo Unificado Racional utiliza um modelo bastante similar ao for-
mato completamente vestido. Numerar as etapas € opcional. As extensdes recebem
suas proprias secoes com titulos e sao chamadas de fluxos alternativos.

» O diagrama de caso de uso UML: O diagrama de caso de uso, composto por elipses,
setas e figuras de pauzinho, ndo é uma notacao para descrever casos de uso. As
elipses e setas mostram a organizacao e decomposicéo dos casos de uso, € ndo o0 seu
contetido. Segundo Cockburn (2001), é possivel decompor os casos de uso utilizando
o diagrama, porém o diagrama de elipse esta faltando informacdes essenciais, como
qual ator esta realizando cada etapa e notas sobre a ordem das etapas.

Apesar de ndo recomendarem nenhum dos formatos e afirmarem que a escolha de um
deles depende do nivel de detalhamento desejado, ambos autores demonstraram uma prefe-
réncia em relacao ao formato de completamente vestido. Cockburn (2001) informa que a maioria
dos exemplos que ele descreveu em seu livro sdo utilizando este formato.

Essa é minha pratica, ndo uma recomendacao. Por alguns anos, eu
usei o formato de duas colunas devido a sua clara separagao visual
na conversa. No entanto, eu voltei para um estilo de uma coluna,
pois é mais compacto e facil de formatar, e o pequeno valor da con-
versa visualmente separada ndo compensa esses beneficios para
mim. Acho que ainda é simples identificar visualmente as diferentes
partes na conversa (Cliente, Sistema, ...) se cada parte e as respos-
tas do Sistema geralmente sdo alocadas em seus proprios passos.
(LARMAN, 2001, p. 54)

2.3.4 Testes

A etapa de testes no processo de desenvolvimento de um sistema consiste em vali-
dar que as funcionalidades implementadas mantenham os resultados esperados ao receberem
diversos tipos de entradas. Sommerville (2011) diz que o teste serve para confirmar que um
programa faz o que deve e identificar problemas antes de usa-lo. Nele, o software € executado
com dados ficticios, e os resultados sdo examinados em busca de erros, anomalias ou questdes
relacionadas ao funcionamento do programa.

29

Sommerville (2011) apresenta a seguinte situacédo sobre a Figura 3, em um cenario hi-
potético, srea considerado o sistema sob teste como uma caixa-preta. Este sistema é submetido
a entradas de um conjunto predefinido e, em resposta, gera saidas correspondentes. Algumas
dessas saidas podem ser incorretas e sao classificadas no conjunto denominado Oe, resultante
das entradas do conjunto le. A énfase primordial nos testes de detecgéo de falhas reside na
identificagdo das entradas presentes no conjunto le, uma vez que essas evidenciam problemas
inerentes ao sistema. Em contrapartida, os testes de validagdo compreendem a utilizagdo de
entradas adequadas que nao pertencem ao conjunto le, com o intuito de estimular o sistema a
produzir resultados corretos.

Figura 3 — llustracao de entrada-saida de teste de programa

— Entradas que causam

Entrada de dadas le e compartamentos andmalos
de teste
\ f
LI
Sistemna
/\
4 \ _ff-f- Saidas que revelam defeitos
Saida de resultados o
de teste e

Fonte: (SOMMERVILLE, 2011).

Sommerville (2011) diz que os dois objetivos do processo de teste sao:

1. Demonstrar tanto ao desenvolvedor quanto ao cliente que o software esta em confor-
midade com os requisitos estabelecidos. No caso de softwares personalizados, isso
implica na realizacao de, pelo menos, um teste para cada requisito mencionado no do-
cumento de requisitos. No contexto de softwares genéricos, a abordagem implica na
realizacao de testes abrangendo todas as caracteristicas do sistema, incluindo suas
diversas combinacdes, que serdo integradas na versao final do produto.

2. Concentrar-se na identificagao de situacdes em que o software apresenta comporta-
mentos incorretos, indesejaveis ou discrepantes em relagdo as especificagdes. Tais
comportamentos decorrem de defeitos no software. Os testes voltados a detecgao de
defeitos tém como principal foco a eliminagdo de comportamentos indesejaveis no sis-
tema, como falhas criticas, interagées ndo desejadas com outros sistemas, processa-
mento inadequado e corrupgéo de dados.

Sommerville (2011) comenta que o primeiro objetivo orienta a realizacdo de testes de
validacdo, nos quais se espera que o sistema funcione corretamente quando submetido a um
conjunto especifico de casos de teste que representam o uso tipico previsto para o sistema.

30

J& o segundo objetivo direciona os esforcos para os testes de defeitos, nos quais os casos
de teste sdo meticulosamente concebidos para expor eventuais defeitos no software. Segundo
Sommerville (2011) , € importante ressaltar que ndo ha uma fronteira rigida entre essas duas
abordagens de teste. Durante os testes de validacao, é possivel identificar defeitos no sistema,
enquanto durante os testes de defeitos, alguns casos de teste podem evidenciar que o programa
esta em conformidade com os requisitos estabelecidos.

Sommerville (2011) declara que os testes ndo garantem que o software seja perfeito ou
que funcione exatamente como esperado em todas as situagbes. Sempre existe a possibilidade
de que um teste omitido possa revelar problemas adicionais no sistema. Ele também cita Dijk-
tra et al. que declara que “Os testes podem mostrar apenas a presenca de erros, € ndo sua
auséncia.” (1972 apud SOMMERVILLE, 2011, p. 145).

Sommerville (2011) categoriza os tipos de testes por periodos que um sistema de apli-
cativos comercial passa por, os trés deles sao:

 Testes durante o desenvolvimento, nos quais o sistema é avaliado enquanto esta sendo
construido, com o propésito de identificar erros e defeitos. Nessa fase, designers de
sistemas e programadores podem estar envolvidos no processo de teste.

» Testes de liberacdo, nos quais uma equipe de teste independente avalia uma versao
completa do sistema antes de ser disponibilizada aos usuarios. O objetivo dos tes-
tes de liberacdo é garantir que o sistema esteja em conformidade com os requisitos
estabelecidos pelos interessados no sistema.

» Testes de usuario, nos quais os usuarios finais ou potenciais testam o sistema em seus
préprios ambientes. Em produtos de software, o “usuario” pode ser um grupo de mar-
keting interno, responsavel por decidir se o software pode ser comercializado, langado
e vendido. Os testes de aceitagdo sdo uma forma especifica de teste de usuéario, no
qual o cliente avalia formalmente o sistema para decidir se ele deve ser aceito pelo

fornecedor do sistema ou se requer desenvolvimentos adicionais.

Sommerville (2011) consta que na pratica, o processo de teste geralmente envolve uma
combinacdo de testes manuais e automatizados. Nos testes manuais, um testador executa o
programa com um conjunto de dados de teste e compara os resultados com as expectativas,
registrando e reportando quaisquer discrepancias aos desenvolvedores do programa. Ja nos
testes automatizados, os testes sao codificados em um programa que é executado sempre que
o sistema em desenvolvimento é testado. Essa abordagem tende a ser mais eficiente do que
0s testes manuais, especialmente em casos de testes de regressao, nos quais testes anteriores
sao reexecutados para verificar se as alteracées no programa nao introduziram novos defeitos.

Sobre os testes de desenvolvimento Sommerville (2011) diz que eles englobam todas
as atividades de teste conduzidas pela equipe responsavel pelo desenvolvimento do sistema.

31

Geralmente, o testador de software é o préprio programador que criou o software, embora essa
n&o seja uma regra inflexivel.

Sommerville (2011) conta que durante o processo de desenvolvimento, os testes podem
ser realizados em trés niveis de granularidade distintos:

» Teste unitario: Nesse nivel, as unidades individuais do programa, como classes de
objetos ou métodos, sdo avaliadas separadamente. Os testes unitarios tém como foco
principal verificar a funcionalidade das unidades em questao.

» Teste de componentes: Nesse estagio, diversas unidades individuais sdo integradas
para formar componentes compostos. Os testes de componentes concentram-se na

avaliagdo das interfaces entre esses componentes.

» Teste de sistema: No nivel de teste de sistema, ocorre a integracdo de algumas ou
todas as partes de um sistema, e o sistema é avaliado como um todo. O objetivo
principal do teste de sistema é verificar as interagcdes entre os diversos componentes
do sistema.

2.3.4.1 Testes unitarios

Sommerville (2011) explica sobre que testes unitérios é o processo de testar componen-
tes do sistema individualmente, onde as funcdes e métodos sdo os componentes mais simples
do programa. Explica ele também que “os testes devem ser chamadas para essas rotinas com
parametros de entrada diferentes” (SOMMERVILLE, 2011).

Sommerville (2011) consta que ao realizar testes em classes de objetos, é fundamental
projetar os casos de teste de modo a abranger todas as caracteristicas do objeto. Segundo ele
isso implica nas seguintes acoes:

» Testar todas as operacdes associadas ao objeto: Certifiqgue-se de que todas as opera-
¢bes ou métodos vinculados ao objeto sejam testados.

+ Definir e verificar o valor de todos os atributos associados ao objeto: Verifique se todos
os atributos do objeto sédo definidos e verificados adequadamente nos casos de teste.

 Colocar o objeto em todos os estados possiveis: Isso requer a simulagéo de todos os
eventos que podem causar mudancgas de estado no objeto.

Sommerville (2011) declara que € importante definir casos de teste para cada um dos
métodos associados ao objeto. O ideal é testar os métodos de forma isolada, embora em de-
terminadas situacbes possa ser necessario criar sequéncias de teste especificas. Sommerville
(2011) diz que nao é suficiente testar uma operagé@o apenas na classe onde ela é definida e
presumir que funcionara corretamente nas subclasses que herdam a operagéo. A operagao

32

herdada pode assumir premissas em relacdo a outras operagdes e atributos que podem nao
ser validos em algumas subclasses que herdam a operacao.

Segundo Sommerville (2011) em testes unitarios automatizados, € comum utilizar um
framework de automacao de testes para escrever e executar testes em seu programa. Esses
frameworks fornecem classes de teste genéricas que podem ser estendidas para criar casos de
teste especificos. Eles sdo capazes de executar todos os testes implementados e reportar os
resultados, frequentemente por meio de uma interface grafica.

Sommerville (2011) diz que um teste automatizado € composto por trés partes:

1. Parte de configuragdo: Nesta etapa, o sistema ¢ inicializado com o caso de teste, ou
seja, sao definidas as entradas e as saidas esperadas.

2. Parte de chamada: Aqui, o objeto ou método a ser testado é invocado.

3. Parte de afirmacao: Nesta fase, o resultado da chamada é comparado com o resultado
esperado. Se a afirmacao for verdadeira, o teste é considerado bem-sucedido; caso
contrério, ele € considerado falho.

Em algumas situagdes, o objeto sob teste pode depender de outros objetos que ainda
nao foram implementados ou que podem atrasar o processo de teste, como no caso de cha-
madas a um banco de dados que envolvem processos demorados. Nestas circunstancias, é
possivel optar por utilizar um “mock objects.” Sommerville (2011) explica que mock objects sao
objetos que possuem a mesma interface que os objetos externos, mas sao usados para simular
seu funcionamento. Por exemplo, um mock objects que simula um banco de dados pode conter
apenas alguns dados organizados em uma estrutura simples, permitindo acesso rapido, sem a
sobrecarga de acessar um banco de dados real. Além disso, mock objects podem ser usados
para simular situagées anormais ou eventos raros.

Sommerville (2011) explica que os testes sdo um processo custoso e demorado, por
isso € crucial selecionar cuidadosamente os casos de teste unitario. Segundo ele a efetividade
nesse contexto implica em duas consideragdes:

1. Os casos de teste devem demonstrar que, quando o componente é utilizado de acordo
com as expectativas, ele desempenha suas fun¢des conforme especificado.

2. Caso haja defeitos no componente, esses problemas devem ser identificados pelos
casos de teste.

Segundo Sommerville (2011) é importante criar dois tipos de casos de teste. O primeiro
tipo reflete o comportamento normal do programa e tem como objetivo verificar o funcionamento
adequado do componente. O segundo tipo de caso de teste baseia-se em cenarios de teste
que abordam os problemas mais comuns que surgem na experiéncia pratica. Esses casos de

33

teste utilizam entradas anormais para verificar se 0 componente lida corretamente com essas
situacoes e ndo falha.

Sommerville (2011) demonstra duas estratégias que podem ser eficazes na selecao de
casos de teste:

» Teste de Particdo: Nessa abordagem, os grupos de entradas que compartilham carac-
teristicas semelhantes e devem ser tratados de maneira idéntica sdo identificados. A
escolha dos testes é feita dentro de cada um desses grupos.

» Testes Baseados em Diretrizes: Essa estratégia se baseia em diretrizes de teste que
refletem experiéncias anteriores sobre os tipos comuns de erros cometidos pelos de-

senvolvedores de componentes durante o desenvolvimento.

Frequentemente, os dados de entrada e os resultados de saida de um software podem
ser classificados em diferentes classes com caracteristicas em comum, como numeros positi-
vos, numeros negativos ou selegbes em um menu. Sommerville (2011) explica que programas
tendem a se comportar de maneira consistente para todos os membros de uma mesma classe.
Portanto, ao testar um programa que envolve calculos e requer dois nimeros positivos, diz Som-
merville (2011) que é razoavel esperar que o programa funcione de forma similar para todos os
ndmeros positivos.

2.4 Ferramentas de Desenvolvimento Web

Ha diversas opc¢oes de linguagens de programacao e frameworks para serem escolhidos
quando se pensa em criar um servidor para uma aplicacao de conversas que usa uma APl para
comunicagado (SHUERMANS; VOSKOGLOU, 2019; OVERFLOW, 2022). Algumas das op¢des
de linguagens disponiveis sio:

« Node.js. E um executor de cdédigo de JavaScript usado na criagdo de servidores. Ele
prové diversas bibliotecas e ferramentas externas para a construcdo de uma API, como
Express e Socket.|O. Node.js é especialmente adequado para aplicacdes em tempo
real, como aplicativos de conversacao, devido a sua arquitetura baseada em eventos.

« Python. E uma linguagem flexivel que pode ser usada para diversos fins. Existem
diversos frameworks web em Python que permitem a criacdo de APIs, como Flask
e Django. O Python também tem varias bibliotecas para trabalhar com APIls, como
requests e aiohtip.

* Ruby on Rails. E um framework web usado para a criagdo de aplicacdes web. Ele
oferece diversos recursos Uteis para a criagao de APIs, como o ActionCable e o Ac-
tiveModelSerializers. Ele é eficiente para o desenvolvimento de aplicagées em pouco
tempo.

34

« Java. E uma linguagem de programagcao popular que é usada para a criagao de apli-
cativos corporativos. Existem diversos frameworks que podem construir APls, como
Spring e Jersey. Ela é adequada para criar aplicagdes escalaveis e robustas.

« Go. E uma linguagem de programacdo recente e projetada para a criacdo de apli-
cativos de alto desempenho. Suporta a concorréncia de forma nativa, o que a torna
adequada para a construcao de aplicagdes em tempo real, como um aplicativo de con-
versas. Além disso, ha diversos frameworks que podem ser usados para criar uma API,
como o Gin e o Echo.

Além disso, existem diversas opg¢des para escolher como front-end. Alguns exemplos de
escolhas populares séo:

» React. Ele é um framework JavaScript usado para criar interfaces para usuarios, sendo
conhecido pelo seu desempenho e flexibilidade. O React dispde de muitas bibliotecas
e ferramentas para facilitar a criacao de interfaces de usuario complexas e interativas,
incluindo um DOM virtual, componentes, e ganchos. Ele é também leve, que significa
que tem uma pequena pegada nos aplicativos e pode ser integrado facilmente com
projetos ja existentes. Pode ser usado com qualquer plataforma de servidor para criar
uma aplicacédo de conversas que se comunica por API.

« Angular. E um framework JavaScript usado para criar aplicativos web. Ele fornece
ferramentas Uteis para a criacdo de interfaces complexas, como o vinculo de dados,
a injecdo de dependéncias e a programacao reativa. Além disso, o framework tam-
bém tem suporte para comunicagao por API nativo. O framework é conhecido como
completo, o que significa que ele tem tudo o que é preciso para criar uma aplicacdo
inteira, como roteamento, formularios e testes. Ele foi criado e vem sendo mantido pelo

Google, e possui uma grande base de programadores que o0 ajudam a evoluir.

« Vue.js. E um framework JavaScript usado para criar interfaces, sendo desenvolvido
para ser simples e facil de usar, permitindo que seja usado até por desenvolvedores
novos na area de interfaces. Vue.js, tal como os dois anteriores, tem varias caracteristi-
cas que facilitam a elaboracao de interfaces, como reatividade, diretrizes e componen-
tes. Assim como o React, ele é leve, que significa que possui uma pequena pegada
nos aplicativos e pode ser facilmente integrado a projetos ja existentes.

« Flutter, E um framework para a criacdo de aplicativos para dispositivos méveis. A lin-
guagem de programacao Dart é utilizada e fornece uma série de widgets que permitem
a criacao de interfaces bonitas e responsivas. O framework também oferece suporte a
comunicagao por API nativo.

« lonic. E um framework para criagao de aplicativos méveis hibridos. Ele usa tecnologias
web, como HTML, CSS e JavaScript para criar aplicacdes que funcionam tanto em iOS

35

qguanto Android. O lonic oferece diversas ferramentas e componentes Uteis para criar
uma aplicagao de conversas, como componentes de Ul e plugins.

Um conceito utilizado nas descricdes anteriores de dois frameworks e precisa de mais
explicacdes é o de uma pequena pegada. Quando um framework tem essa caracteristica, sig-
nifica que tem uma pequena quantidade de cédigo e precisa de menos recursos para rodar do
que o padrao. Isso traz alguns beneficios, como a rapidez e a eficiéncia, devidos a menor quan-
tidade de cédigo a ser executado, além de ser mais facil de usar devido a menor quantidade
de funcionalidades para aprender. Em suma, uma pegada reduzida significa uma diminuicao do
quanto de meméria e poder de processamento é necessario para rodar o framework, o que pode
ser relevante em ambientes que requerem uma restricao desses recursos (PCMAG, 2023a).

Resumidamente, cada tipo de linguagem ou framework tem as suas qualidades e fra-
quezas. A escolha ideal de um deles, tanto para um servidor quanto para a interface do usuério,
para um aplicativo de conversas, dependera dos requisitos especificos, habilidades e preferén-
cias do usuario.

Para este trabalho, foi escolhido o Node.js para a criacao do servidor, e 0 Vue.js para
a interface do usuario. A selegao foi baseada na familiaridade ja existente com ambas as tec-
nologias, com a linguagem de programagao JavaScript, € na facilidade de adigdo de recursos
externos que o gerenciador de pacotes NPM, do Node.js, oferece.

2.4.1 Node.js(v18.16.0) e Express(v4.17.3)

JavaScript é uma linguagem de programacao que é leve, interpretada ou compilada
no momento (MDN, 2023b). Ela tem fungcbes de primeira-classe, o que significa que elas séao
tratadas da mesma forma que qualquer outra variavel (MDN, 2023c). O HTML € usado para
armazenar o conteudo e o formato de uma pagina da Internet. O CSS define a formatacao e a
aparéncia. O JavaScript é usado para tornar uma pagina web mais dinamica e criar aplicacdes
web mais complexas (MDN, 2023d).

Embora seja mais conhecida pelo seu uso em péaginas da Internet, com o auxilio de
ferramentas como o Node.js, Apache CouchDB e Adobe Acrobat, ela pode ser usada fora do
ambiente de um navegador (MDN, 2023b).

Como executor de cédigo de JavaScript assincrono e direcionado a eventos, Node.js
foi criado no V8 JavaScript engine (NODE.JS, 2023a), para criar aplicagbes que podem ser
escalaveis na rede (NODE.JS, 2023b).

Node.js tem se tornado cada vez mais popular nos ultimos anos como a escolha prefe-
rida para a criacdo de aplicagbes web em tempo-real e APIs, devido ao seu foco em eventos
e ao seu modelo de ndo bloquear as entradas e saidas (MDN, 2023b). Isso possibilita que
0s desenvolvedores possam administrar diversos acessos de clientes simultaneamente, sem

dificultar a execugao do cdédigo.

A~ O NN =

36

Listagem 1 — Exemplo de funcao middleware

app.use((err, req, res, next) => {
console.error(err.stack)
res.status (500).send(’ Something broke!”’)

})

Fonte: Autoria propria (2023).

Ele apresenta uma grande variedade de bibliotecas construidas e médulos que podem
ser facilmente integrados em uma aplicacdo web para lidar com diferentes tarefas, como um
sistema de entrada e saida de arquivos, gerenciamento de rede, criptografia, e transmissao
de dados. Além disso, disponibiliza um gerenciador de pacote chamado NPM (Node Package
Manager), que possibilita aos programadores instalar, administrar e compartilhar com facilidade
bibliotecas e médulos de outros criadores.

Ele é uma opcao primorosa para a elaboragdo de microsservicos e aplicacdes server-
less. O programador tem a opgao de criar e implantar componentes pequenos, modulares e
independentes que possam ser mantidos e escalados.

A tecnologia oferece muitas vantagens para um desenvolvedor de back-end. Sua capa-
cidade de lidar com aplicagbes em tempo real e de grande escala, aliada a sua flexibilidade,
escalabilidade e facilidade de integracdo com outras tecnologias, tornam-no uma op¢ao popular
na construgéo de aplicativos web modernos.

Como comentado anteriormente, no conjunto de ferramentas do Node, existe 0 NPM
que permite a facil integracao de moédulos externos na aplicacao.

Express prové uma série de caracteristicas robustas para aplicacées web e méveis (EX-
PRESS.JS, 2023b). Ele permite que sejam criados administradores para requisicdes HTTP com
diferentes tipos e rotas. Ele esta integrado a motores de renderizagcéo para gerar respostas ao
inserir dados em modelos (MDN, 2023a).

Além disso, é possivel adicionar configuragdes comuns nos aplicativos web, como a
porta usada para se conectar e a localizacdo dos modelos usados para renderizar as respos-
tas. Adicionalmente é possivel adicionar middleware extra de processamento de requisicdo em
qualquer ponto na pipeline da requisicao (MDN, 2023a).

Funcdes de middleware sdo as que estdo entre os objetos das requisigdes e respostas
em uma aplicagdo que usa o protocolo HTTP para se comunicar. Podem ser empregadas para
diferentes finalidades, tais como elaboracao de relatérios, autenticacao, tratamento de erros,
dentre outras (EXPRESS.JS, 2023a). Na Listagem 1, tem-se um exemplo de como uma fungéo
middleware pode ser utilizada para tratamento de erros.

Outra vantagem do Express é a sua flexibilidade, ja que ele ndo impbée nenhuma regra
ou convengao, permitindo aos desenvolvedores estruturar suas aplica¢gdes conforme as suas
necessidades. Essa caracteristica também torna a integracdo com outras tecnologias e servi-
¢os mais simples, como bancos de dados, sistemas de armazenamento temporario e filas de

mensagens.

O© 0N O~ WN =

a b~ O =

37

Listagem 2 — Exemplo de codigo JS no Vue.js

import { createApp } from ’vue’

createApp ({
data () {
return {
count: 0

}

}
}) . mount(’ #app’)

Fonte: (VUE.JS GUIDE, 2023a).

Listagem 3 — Exemplo de codigo HTML no Vue.js

<div id="‘app‘ ‘>
<button @click="‘count++‘‘>
Count is: {{ count }}
</button>
</div>

Fonte: (VUE.JS GUIDE, 2023a).

2.4.2 Vue.js(3.2.25)

Vue é um framework JavaScript para construir interfaces de usuéarios. Com base nos
padroes HTML, CSS e JavaScript, ele cria um modelo de programagao declarativo e baseado
em componente que ajuda a desenvolver as interfaces de maneira eficiente, sejam elas simples
ou complexas (VUE.JS GUIDE, 2023a).

Em seguida, as duas funcionalidades fundamentais do Vue (VUE.JS GUIDE, 2023a):

» Renderizacdo declarativa: Vue estende o HTML padrdao com uma sintaxe modelo que
permite descrever de forma explicita a saida do HTML conforme o estado do JavaScript
(VUE.JS GUIDE, 2023a).

» Reatividade: Ele localiza automaticamente as alteragcdes no estado do JavaScript e
atualiza o DOM de forma eficiente quando elas ocorrem (VUE.JS GUIDE, 2023a).

Esse é um framework e um sistema que contém a maioria das funcionalidades neces-
sarias para um desenvolvimento de front-ends. Contudo, a Internet é bastante diversa, e as
coisas criadas para ela podem variar muito em termos de tamanho e forma. Pensando nisso,
Vue foi desenvolvido para ser flexivel e incrementalmente adaptavel (VUE.JS GUIDE, 2023a).
Dependendo do caso de uso, Vue pode ser usado de diversas maneiras:

» Melhoramento do HTML estatico sem uma etapa de construcéo.

* Incorporagédo de componentes em qualquer pagina;

0O NOoO Ok~ WO =

—_ e
O© 00O NOOLhA~ WND = O ©

38

Listagem 4 — Exemplo de um SFC no Vue.js

<script>
export default {
data() {
return {
count: 0O
}
}
}

</script>

<template >
<button @click="‘count++‘*>Count is: {{ count }}</button>
</template >

<style scoped>

button {
font-weight: bold;

}

</style >

Fonte: (VUE.JS GUIDE, 2023a).

+ Criacao de aplicacdo de pagina unica;

* Renderizacdo no lado do servidor;

» Geracgao de sites estaticos;

» Geracao de aplicativos para computadores desktop, méveis, WebGL, e até terminais.

Apesar da flexibilidade, todos esses casos de uso compartilham o principal conheci-
mento de como o Vue funciona. Mesmo para um iniciante, o conhecimento adquirido ao longo
do caminho continuara a ser Util em objetivos futuros mais ambiciosos.

Se o desenvolvedor for um profissional experiente, pode escolher a forma mais ade-
quada de aproveitar o Vue, conforme os problemas que esta tentando resolver, enquanto man-
tendo a mesma produtividade. Por isso, é chamado de framework progressivo, pois ele é um fra-
mework que pode crescer com o desenvolvedor e adequar-se as suas necessidades (VUE.JS
GUIDE, 2023a).

Na maioria dos projetos Vue, sdo construidos componentes utilizando-se um formato de
arquivo similar ao HTML, chamado de Componente de arquivo unico (Single-File Component
— SFC). Como o nome sugere, ele encapsula a légica do componente (JavaScript), o formato
(HTML), e os estilos (CSS) em um dnico arquivo. SFC é uma das funcionalidades que definem
0 Vue e é a maneira recomendada para criar componente Vue (se for possivel garantir uma
configuracédo de construcéo) (VUE.JS GUIDE, 2023a). A Listagem 4 apresenta um exemplo de
um arquivo escrito no formato de SFC:

0O NOoO Ok~ WO =

W N MNDMNDNDNDNDMNDNDNODN 2= = 2o
QO OW OO NOOOPPWDN OO 0ONOOOOGP~WNM OO0

39

Listagem 5 — Exemplo da Options API

<script>
export default {
// Propriedades retornadas do data() se tornam reativas
// e sao expostas pelo ‘this‘.
data() {
return {
count: 0

}
b

// Methods sao funcoes que mutam os estados e ativam atualizacoes.
// Eles pode ser vinculados a listeners no formato.
methods: {
increment () {
this.count++

}
b

// Ganchos do tempo de vida sao chamados em
// diferentes estagios de um componente.
// Essa funcao eh chamada quando um componente eh montado.
mounted () {
console.log(‘The initial count is ${this.count}.")
}
}

</script>

<template>
<button @click="‘increment‘‘>Count is: {{ count }}</button>
</template >

Fonte: (VUE.JS GUIDE, 2023a).

Os componentes podem ser criados usando dois estilos de APIs diferentes: a API Opti-
ons e a APl Composition (VUE.JS GUIDE, 2023a).

+ Com a API Options, estabele-se a légica do componente usando um objeto de con-
figuracdes como “data®, “methods” e “mounted”. Propriedades definidas por opgdes
sao apresentadas pelo “this” nas fungdes, apontando para a instancia do componente
(VUE.JS GUIDE, 2023a).

» A APl Composition define a légica do componente usando fun¢des da APl importadas.
Em SFCs, esse estilo é tipico quando se usa o atributo <script setup>. O atributo setup
que indica ao Vue realizar transformagdes em tempo de compilacdo que permitem
utilizar o estilo com menos cédigo padronizado. As importagdes, variaveis e fungdes
declaradas no <script setup> sao utilizaveis diretamente no formato (VUE.JS GUIDE,
2023a).

0O NOoO Ok~ WO =

N = —m 4 a4 a4
O ©W oo NOoO O A~ WD+ OO0

40

Listagem 6 — Exemplo da Composition API

<script setup>
import { ref, onMounted } from ’vue’

// estado reativo
const count = ref(0)

// funcoes que mutam os estados e ativam atualizacoes.
function increment() {
count.value++

}

// Ganchos de ciclo de vida do componente
onMounted (() => {
console.log(‘The initial count is ${count.value}.")

})

</script>

<template >
<button @click="‘increment‘‘>Count is: {{ count }}</button>
</template >

Fonte: (VUE.JS GUIDE, 2023a).

Ambas as APls, Options e Composition, sdo baseadas no mesmo sistema e comparti-
Iham seus principios basicos. A API Options €, na verdade, construida sobre a API Composition.
Isso as torna capazes de lidar com casos comuns (VUE.JS GUIDE, 2023a).

A API Options esta centrada no conceito de uma instancia do componente, o que, geral-
mente, se adéqua melhor a um modelo mental de classes para usuarios que vem do modelo de
linguagem de programacao orientada a objetos. Além disso, ela é mais facil de ser compreen-
dida por iniciantes, ao evitar os detalhes de reatividade e dificulta a divisdo do c6digo em grupos
de opgoes (VUE.JS GUIDE, 2023a). A Listagem 5 demonstra um exemplo da API Options.

A AP| Composition € composta pela declaragao de variaveis que possuem um estado
reativo em um corpo de uma fungao e um estado composto de mdltiplas fungdes que, juntas,
cuidam da complexidade. E um formato mais aberto e requer um entendimento de como a rea-
tividade funciona no Vue para ser usado eficientemente. A flexibilidade do componente, por sua
vez, permite criar padroes mais poderosos para organizar e reutilizar a légica do componente
(VUE.JS GUIDE, 2023a). A Listagem 6 demonstra um exemplo da APl Composition.

Algumas recomendagdes para se escolher entre elas:

+ Para fins de aprendizado, deve-se escolher o estilo que parece mais facil de compre-
ender. A maioria dos conceitos principais €, novamente, compartilhada entre os dois
estilos, sendo assim, sempre € possivel escolher outro estilo depois (VUE.JS GUIDE,
2023a).

» Para uso em producgao

41

— Se nao sao usadas ferramentas de construcao ou pretende-se usar o Vue so-
mente em ambientes de pouca complexidade, deve-se escolher a APl Options
(VUE.JS GUIDE, 2023a).

— Se pretende-se criar aplicativos inteiros usando Vue, deve-se utilizar a API
Composition com o SFC (VUE.JS GUIDE, 2023a).

Outro conceito relevante do Vue é o ciclo de vida dos componentes. Cada um deles
segue uma série de etapas para iniciar quando sdo criados, como, por exemplo, configurar
um observador de dados, compilar o formato, montar a instancia para o DOM, ou atualizar o
DOM quando os dados mudam. Durante essas etapas, ele também executa fun¢gdes chamadas
de ganchos de ciclo de vida, que permitem aos usuarios adicionar seus préprios cédigos em
determinados estagios (VUE.JS GUIDE, 2023b). Na Figura 4 pode-se ver um ciclo de vida.

Figura 4 - llustragao do ciclo de vida de um componente

Renderer

encounters component

setup |l _ _________
(Composition API)
[beforeCreate]4-

Init Options API

[created]4-

Has
pre-compiled
template?

Compile template
on-the-fly

[beforeMount]4-

initial render

create & insert DOM nodes

[beforeUpdate]
when data
[mounted ‘4' ---------- . - Thangés™ ~ _ v

re-render

and patch

1 \
1 N

1
when -
component
is unmlounted

1
[beforeUnmount]4- ___________ .:
[unmounted]4

updated]

Fonte: (VUE.JS GUIDE, 2023b).

42

43

3 DESENVOLVIMENTO

Neste capitulo, sera detalhado o processo de desenvolvimento do aplicativo. Embora te-
nha sido adotado o modelo de desenvolvimento e entrega incremental, optou-se por apresentar
0 processo como se tivesse sido realizado no modelo cascata. Essa escolha se da pelo fato
de que a estrutura linear e sequencial do modelo cascata pode proporcionar uma compreensao
mais clara e organizada do passo a passo envolvido na criacdo do sistema.

3.1 Levantamento de Requisitos

A fase de levantamento de requisitos tem como fungdo compreender e documentar as
necessidades e restricbes das partes interessadas, compostas pelo time de suporte e o tech-
lead. O objetivo é garantir a elaboragdo de um sistema que esteja alinhado e atenda a essas
especificagoes.

3.1.1 Identificagdo das Partes Interessadas e Metodologia

Identificado-se que as partes interessadas seriam os times de suporte ao cliente. O
método de chuva de ideias, que consiste em coletar ideias de um grupo direcionado, foi usado
para explorar os potenciais requisitos.

As sessbes foram conduzidas por uma equipe composta pelo desenvolvedor, o tech-
lead, o gerente do time de suporte, e o analista de suporte com mais tempo de experiéncia
no time. A equipe realizou diversas reunides para conduzir uma chuva de ideias focada em
melhorar o processo de atendimento aos clientes pelo WhatsApp. Durante essas sessoes, 0
grupo foi incentivado a gerar ideias criativas, mantendo-se alinhado com o objetivo principal
do projeto. Foram estabelecidos critérios claros para a sele¢do de requisitos, garantindo que
qualquer ideia que ampliasse excessivamente 0 escopo ou se desviasse do principio escolhido
fosse desconsiderada, mantendo o foco no objetivo principal.

3.1.2 Lista de Requisitos
Sera apresentada a primeira iteracdo da lista desenvolvida com as ideias coletadas e
uma pequena descricao dela:

» Sistema de Atendimentos: Atribuir, rastrear e gerenciar conversas de clientes garan-
tindo que nenhuma seja ignorada e que sejam atendidas prontamente.

» Anadlise de Desempenho: Gerar relatérios sobre membros individuais da equipe re-
ferentes ao tempo de resposta, tempo de resolucéo de atendimentos e feedback do

44

cliente. Analisar os periodos de pico das conversas dos clientes para otimizar a aloca-
¢ao de pessoal.

Auto-Atribuicao: Distribuir automaticamente as conversas recebidas para os mem-
bros da equipe disponiveis com base em sua carga de trabalho atual, especializacao
ou desempenho anterior.

Integracao com Base de Conhecimento: Equipar os membros da equipe com uma
base de conhecimento constantemente atualizada para responder rapidamente a con-
versas comuns. Permitir que os membros da equipe contribuam e aprimorem esta base

ao longo do tempo.

Médulos de Treinamento: Implementar médulos de treinamento no software para in-
tegracao de novos membros da equipe. Fornecer oportunidades continuas de aprendi-
zado para 0s membros existentes se manterem atualizados com mudangas no produ-

to/servico.

Chat Interno: Facilitar a comunicagao em tempo real entre os membros da equipe para
que possam buscar assisténcia ou colaborar em conversas desafiadoras.

Pesquisas de feedback do Cliente: Pesquisas pés-interacao para coletar feedback
dos clientes. Analisar feedback para identificar areas de melhoria e elogiar servigos
exemplares.

Automacao de Tarefas: Automatizar tarefas repetitivas (como enviar mensagens de

reconhecimento) para reduzir a carga de trabalho manual e potenciais erros.

Caminhos de Escalonamento: Definir procedimentos claros de escalonamento, ga-
rantindo que questdes complexas ou sensiveis sejam encaminhadas aos individuos ou
departamentos adequados.

Garantia de Qualidade: Implementar ferramentas para que supervisores monitorem
e avaliem a qualidade das interagbes de suporte. Permitir amostragem aleatéria de
interagbes para verificagdes de qualidade.

Gerenciamento de Escalas e Turnos: Ferramentas para gerenciar os horarios da
equipe, garantindo cobertura étima em periodos de pico. Fornecer alertas para horas
extras ou nao conformidade com leis trabalhistas.

Motivacao & Reconhecimento: Quadros de lideres para reconhecer membros da
equipe de alto desempenho. Implementar estratégias de gamificagcdo para motivar os
membros da equipe a alcancar marcos de desempenho.

45

* Integracdao com Outras Plataformas: Integracdo com CRM, Gerenciamento de In-
ventario ou outras plataformas relevantes para fornecer aos representantes de suporte
todas as informagdes necessarias ao alcance de um clique.

» feedback Loop: Permitir que membros da equipe fornecam feedback sobre o préoprio
sistema, sugerindo melhorias ou relatando problemas.

» Recursos de Seguranca: Proteger os dados e conversas dos clientes. Garantir con-
formidade com regulamentos de privacidade.

3.1.3 Requisitos Rejeitados

Alguns dos requisitos listados foram desconsiderados devido a sua complexidade, sendo
eles:

* Integracao com a base de conhecimento: A implementagao desta funcionalidade
exigiria a criagdo de uma Wiki ou de um recurso similar. Isso envolveria um esforgo
significativo na configuracdo, manutengao e integracdo com o sistema existente. A
complexidade e 0s recursos necessarios para essa integracio excedem 0 escopo €
0s objetivos do projeto atual.

* Modulos de Treinamento: Esse requisito compartilha desafios semelhantes com a
integracdo da base de conhecimento. Seriam necessarios recursos adicionais para
desenvolver médulos de treinamento interativos e sua integracdo no sistema atual. A
analise determinou que o beneficio ndo justificaria o esforgo adicional nesse momento.

« Automacao de tarefas: A incerteza em relagdo a conformidade com as politicas do
WhatsApp para automatiza¢des de terceiros torna esse requisito arriscado. Sem cla-
reza regulatéria, a implementacao poderia resultar em problemas legais ou técnicos,
impactando negativamente o funcionamento geral do sistema ou até mesmo invalidar

este trabalho de conclusao de curso.

+ Caminhos de escalamento: A definicdo clara de procedimentos de escalonamento
exigiria uma pesquisa mais profunda e especifica, envolvendo diversas areas e possi-
veis cenarios. Isso prolongaria o desenvolvimento e poderia atrasar outras areas criti-

cas do projeto.

» Gerenciamento de escala de turnos: Essa funcionalidade representa um sistema
separado e ndo se alinha com a intengao original do projeto, que se concentra mais no
suporte ao cliente do que na gestao de recursos humanos. Portanto, foi decidido ndo
prosseguir com essa integragao.

46

* Integracdao com outras plataformas: Integrar com outras plataformas, como CRM
ou Gerenciamento de Inventario, exigiria uma grande quantidade de trabalho de de-
senvolvimento e testes, além de possiveis acordos com provedores de terceiros. Essa
complexidade vai além do escopo deste projeto e, portanto, essa integracéo foi ex-
cluida.

» Recursos de seguranca: Embora a seguranga seja uma consideracao vital, a deciséo
foi criar apenas o minimo necessario para garantir a seguranga e a privacidade dos cli-
entes. A implementacao de recursos avancados de seguranga exigiria uma andlise de
risco mais aprofundada, treinamento adicional e possivelmente hardware ou software
adicional. Esses fatores seriam desproporcionais ao tamanho e ao escopo do projeto
atual.

3.1.4 Categorizagao dos Requisitos

A seguir sdo categorizados os requisitos restantes em duas classes distintas. A primeira
categoria, 'Necessario ter’, inclui os requisitos indispensaveis para o funcionamento basico do
sistema. Estes devem ser cumpridos sem excecdo. A segunda categoria, ‘Gostariamos de ter’,
engloba funcionalidades que, embora ndo essenciais, enriqueceriam o sistema, proporcionando
uma experiéncia de usuario mais robusta e completa.

1. Necessario ter:

Sistema de Atendimentos

Auto-Atribuicao

Garantia de Qualidade

feedback Loop

2. Gostariamos de ter:

Analise de Desempenho

Chat Interno

» Pesquisas de feedback do Cliente

Motivacdo & Reconhecimento

O levantamento de requisitos proporcionou uma compreensao clara e concisa das ne-
cessidades e expectativas das partes interessadas. Este fundamento sélido nos permite avan-
car para a fase de modelagem, onde a estruturagdo de classes, tabelas de banco de dados e
diagramas sera vital para transformar estas necessidades em uma solugao funcional.

47

3.2 Modelagem

A fase de modelagem marca o momento em que o projeto comecga a emergir do concei-
tual para o concreto. Utilizando a fundacéao sélida estabelecida no levantamento de requisitos, a
estruturacao de classes, do banco de dados e dos diagramas desempenha um papel crucial na
construgdo de uma solugao funcional. E aqui que as ideias comegcam a tomar forma, guiadas
pelas metas claramente definidas durante o levantamento de requisitos.

3.2.1 Casos de uso

O método escolhido para demonstrar os casos de uso sera o completamente vestido, ou
fully-dressed.

3.2.1.1 Caso de Uso 1: Sistema de Atendimentos

Ator Principal: Analista de suporte
Partes Interessadas e Interesses:

Analista de suporte: Quer entrada de novas conversas com clientes rapido, e a possi-
bilidade de rastrear e gerenciar-las.

Cliente: Quer atendimento rapido com esforco minimo. Quer solu¢do esperada para o
problema relatado na conversa.

Administradores: Querem gerenciar e monitorar as conversas de suporte.

« Empresa: Quer registrar com precisdo os atendimentos e satisfazer os interesses do
cliente. Quer atualizagdo automatica e rapida do status da conversa com o cliente.

Pré-condicoes: O analista de suporte é identificado e autenticado.

Garantia de Sucesso (Pos-condicoes): Atendimento é concluido com sucesso. O cli-
ente recebeu a solugdo adequada ao problema relatado. A conversa é registrada. A administra-
cao é informada sobre o status do atendimento encerrado.

Cenario de Sucesso Principal (ou Fluxo Basico):

1. O cliente envia uma mensagem para o atendimento ao cliente utilizando o WhatsApp.
2. O sistema registra a nova mensagem do cliente.

3. O sistema registra tenta cadastrar o cliente, caso ele nao tenha um cadastro ja feito.
4. O sistema mostra aos analistas de suporte a nova conversa

5. O analista recebe a mensagem do cliente e inicia uma nova tarefa.

10.

11.

12.

13.

14.

15.

16.

17

1

2

3

1

2

3

48

O analista pede ao cliente as informagdes necessarias para iniciar um novo protocolo.
O cliente responde ao analista com todas as informagdes necessarias.

O analista registra no sistema as novas informagdes sobre o cliente na tarefa.

Os analistas perguntam ao cliente sobre o problema que ele esta tendo com o produto.

O cliente fornece as informacdes necessarias para entender o problema.

O analista e o cliente repetem os passos 9 e 10 até que o analista entenda o problema.
O sistema registra uma nova tarefa.

O analista relata ao cliente todas as informagdes necessérias para resolver o problema.
O analista pergunta ao cliente se ha algo mais com o qual possa ajudar.

O cliente informa que nao precisa de mais nada.

O analista informa ao cliente que esta encerrando a conversa.

O analista informa ao sistema que a conversa e o problema foram resolvidos, e 0 que

foi feito para resolver.

. O sistema registra que a tarefa foi resolvida.

Extensoes (ou Fluxos Alternativos):
*a. A qualquer momento, se a conexao com o WhatsApp encerrar:

. O sistema guardara todas as conversas ativas.
. O sistema marcara com uma bandeira, indicando que essas conversas tém prioridade.

. O sistema informara aos atendentes quais sdo essas conversas prioritarias, para que

eles possam retornar o chamado quando restabelecer a conexao.

3-14a. O cliente decide cancelar o atendimento:

. Cliente avisa o analista para cancelar o chamado.

. O analista pergunta o motivo.

Cliente informa ou ndo o motivo.

Caso o cliente informe um motivo, adiciona-lo nos detalhes do cancelamento para ad-

ministracao.

O sistema registra que a tarefa foi resolvida e informa o motivo (se houver).

49

3-14b. O analista decide suspender o atendimento:
1. O analista suspende o chamado.
2. O analista deve informar o motivo da suspensao do chamado.
3. O sistema registra que a tarefa foi resolvida e informa o motivo (se houver).

3-14c. O analista demora para responder o cliente:
Caso haja uma demora de resposta do atendente ou se ele deixar de encerrar o cha-

mado, o sistema ira informar o atendente em 2 momentos:

1. O primeiro momento é na marca de 5 minutos, onde o sistema ira notificar o atendente,
utilizando um elemento grafico amarelo.

2. O segundo momento é na marca de 10 minutos, onde o sistema ira notificar o aten-

dente, utilizando um elemento gréafico vermelho.
9-10. O analista ndo consegue entender o problema:
1. O analista iniciara o processo pedido de transferéncia para outro analista.
2. O analista informara a administracao o motivo.

3. a. A administracao transferira o atendimento para quem eles acharem mais adequado.
al. O sistema apresentara ao novo analista a conversa com o cliente. b. A administra-
cao informara ao analista que o pedido foi negado.

Requerimentos especiais:

» Sem requerimentos especiais.

Lista de Variac6es de Dados e Tecnologia:
 Informacdes sobre o cliente.

* Informagdes sobre o problema do cliente.

Frequéncia de Ocorréncia: Pode ser quase continuo
Questoes em Aberto: Qual sera o processo para atualizar o sistema ou lidar com falhas

técnicas? Existem leis ou regulamentos que precisam ser cumpridos?

50

3.2.1.2 Caso de Uso 2: Auto-Atribuicdo de Conversas

Ator Principal: Cliente
Partes Interessadas e Interesses:

» Analista de Suporte: Quer receber conversas que correspondam a sua especializacao,
carga de trabalho atual, e desempenho anterior.

+ Equipe de Suporte: Quer distribuicao justa e eficiente das conversas entre os membros.

» Administradores: Querem supervisar a distribuicdo de conversas, garantindo eficacia e

eficiéncia.

» Empresa: Quer rapida resolugédo das conversas, satisfazendo os clientes e mantendo
um registro preciso da distribuicao.

Pré-condicoes: Conversas sao recebidas pelo sistema. Membros da equipe estao dis-
poniveis.

Garantia de Sucesso (Pds-condicoes): As conversas sao distribuidas aos membros
da equipe de acordo com a especializagédo, carga de trabalho atual e desempenho anterior. A
distribuicao é registrada.

Cenario de Sucesso Principal (ou Fluxo Basico):

1. O cliente inicia uma nova conversa.

2. O sistema recebe a conversa.

3. O sistema verifica 0s membros da equipe disponiveis.

4. O sistema avalia a especializacao e a carga de trabalho atual.

5. O sistema atribui a conversa ao membro da equipe mais adequado.

6. O sistema registra a atribuigao.

7. O membro da equipe recebe a conversa e comega a interagao com o cliente.

Extensdes (ou Fluxos Alternativos):
*a. A qualquer momento, se ndo houver membros da equipe disponiveis:

1. O sistema enfileira a conversa.
2. O sistema notifica os administradores sobre a falta de disponibilidade.
2a. Membro da equipe indisponivel apés a atribuicao:

1. O sistema redistribui a conversa a outro membro da equipe.

51

Requisitos Especiais:

» O sistema deve ser capaz de avaliar a especializagao, a carga de trabalho e 0 desem-
penho anterior dos membros da equipe.

+ Adistribuigao deve ser realizada em tempo real ou préximo ao tempo real para garantir
uma resposta rapida aos clientes.

Lista de Variacoes de Dados e Tecnologia: Nao ha nenhuma variagcdo de dados ou
tecnologia.

Frequéncia de Ocorréncia: Pode ser continua, dependendo do volume de conversas.

Questoes em Aberto:

« Como o sistema avalia a especializacdo e o desempenho anterior?
* Quais sao os critérios para a distribuicao justa das conversas?
+ Existe a necessidade de intervengao manual na distribuigao?

« Como o sistema lida com a mudanga de disponibilidade dos membros da equipe em
tempo real?

3.2.1.3 Caso de Uso 3: Garantia de Qualidade

Ator Principal: Supervisor de Qualidade
Partes Interessadas e Interesses:

» Supervisor de Qualidade: Deseja ferramentas para monitorar e avaliar a qualidade do
atendimento ao cliente.

» Analista de Suporte: Quer feedback sobre seu desempenho para melhorar futuras in-
terac6es com o cliente.

» Administradores: Querem métricas confiaveis sobre a qualidade do suporte para tomar
decisdes informadas.

« Empresa: Quer garantir a maxima qualidade no atendimento ao cliente para manter ou
aumentar a satisfagao do cliente.

Pré-condicoes: Supervisor de Qualidade é identificado e autenticado.

Garantia de Sucesso (Pos-condicoes): Interacoes sao revisadas e avaliadas. Relatério
de garantia de qualidade € gerado e compartilhado com os interessados.

Cenario de Sucesso Principal (ou Fluxo Basico):

1. O supervisor acessa o sistema.

52

2. O sistema apresenta uma lista de conversas de todos dos os usuérios cadastrados.
3. O supervisor seleciona uma interagao para revisao.
4. O sistema carrega e apresenta os detalhes da interagao selecionada.

5. O supervisor avalia a interacao usando critérios predefinidos (tempo de resposta, qua-
lidade da solucéo, etc.).

6. O supervisor opta por manter a conversa com o analista atual ou designar a conversa
para outro.

Extensdes (ou Fluxos Alternativos):
2a. O sistema nao possui nenhuma interacao guardada

1. O sistema alerta o Supervisor da falta de interacdes entre os analistas e os clientes.
Requerimentos especiais:
» Sem requerimentos especiais.
Lista de Variac6es de Dados e Tecnologia:

« Critérios de avaliacdo podem ser personalizados pelo Supervisor de Qualidade ou pré-
definidos pela empresa.

Frequéncia de Ocorréncia: A revisdo e avaliagdo podem ser eventos diarios, especial-
mente em grandes centros de suporte ao cliente.
Questoes em Aberto:

» Como lidar com disputas entre o Supervisor de Qualidade e os Analistas de Suporte
em relagdo as avaliagbes?

» Quais sao os critérios especificos de avaliagao?

» Ha alguma forma de automacao para tarefas repetitivas no processo de avaliagao de
qualidade?

3.2.1.4 Caso de Uso 4: feedback Loop

Ator Principal: Membro da Equipe
Partes Interessadas e Interesses:

» Membro da Equipe: Quer uma forma eficaz de comunicar problemas ou sugestoes de
melhorias no sistema.

53

» Administradores: Querem coletar feedback para aprimorar a eficiéncia do sistema e
resolver problemas rapidamente.

» Desenvolvedores: Querem entender como suas alteracdes no sistema estdao sendo

recebidas e que ajustes precisam ser feitos.

» Empresa: Quer garantir que o sistema atenda as necessidades da equipe, para maxi-
mizar a eficiéncia.

Pré-condicoes: Membro da equipe é identificado e autenticado no sistema.

Garantia de Sucesso (Poés-condicoes): O feedback é registrado e notificado aos ad-
ministradores e desenvolvedores, de acordo com a categoria designada.

Cenario de Sucesso Principal (ou Fluxo Basico):

1. O membro da equipe acessa a area de registro de “feedback” no sistema.
2. O sistema apresenta um formulério de cadastro para o membro da equipe preencher.

3. O membro da equipe preenche o formulario, informando todos os detalhes que acredi-
tar ser necessario, e clica em “Salvar”.

4. O sistema valida os dados inseridos.

5. O sistema registra o feedback.

6. O sistema notifica os desenvolvedores sobre a criacdo de um novo “feedback®.
7. Os desenvolvedores decidem se irdo ou nao trabalhar no “feedback" registrado.

Extensoes (ou Fluxos Alternativos):
6a. Dados invalidos ou incompletos:

1. O sistema notifica 0 membro da equipe sobre o erro.
2. O membro da equipe corrige os dados e reenvia.
Requisitos Especiais:
» O sistema deve ser capaz de categorizar e priorizar os feedbacks.
Lista de Variac6es de Dados e Tecnologia:
* Tipo de feedback (Problema ou Melhoria).
* Nivel de prioridade do feedback.

Frequéncia de Ocorréncia: Esporadico, dependendo das necessidades e experiéncias
da equipe.
Questoes em Aberto:

54

+ Como os administradores e desenvolvedores tratarao esse feedback de forma eficaz?
» Existe um processo de revisdo ou aprovacgao para as alteragdes propostas?

Embora ainda existam outros trés requisitos que sao desejaveis no sistema, foi decidido
por omiti-los para evitar um aumento na complexidade da elaboracao deste documento e, con-
forme citado anteriormente com base em Larman, os caso de uso tem como objetivo ser uma
ferramenta para estabelecer promessas especificas sobre o que o sistema sera capaz de fazer
(LARMAN, 2001).

3.2.2 Diagramas de entidade-relacionamento

Apos a fase de anadlise de requisitos, € iniciada a etapa de modelagem de dados. Con-
forme destacado por Hernandez, essa fase emprega métodos como diagramas de entidade-
relacionamento (DER), modelagem de objeto seméantico, modelagem de papel-objeto e UML
para estruturar o banco de dados (HERNANDEZ, 2021).

Esta se¢do é dedicada a fase de modelagem do banco de dados, que sera implemen-
tado em MySQL. O foco aqui é na definicdo dos campos e sua associacdo com as tabelas
correspondentes. Cada tabela tera seus elementos essenciais, como chaves primarias, diferen-
tes niveis de integridade de dados e respectivos relacionamentos.

O diagrama, demostrado na Figura 5 na pagina 55, € composto por seis tabelas: Usuario,
Times, Status, Clientes, Conversas e Tarefas.

» Usuario: Cada usuario deve possuir um Unico status e deve pertencer a um Unico time.

» Status: Um status pode estar associado a multiplos usudrios, mas cada usuario sé
pode ter um status.

» Times: Semelhante ao status, um time pode conter varios usuarios, mas cada usuario

pertence a apenas um time.

» Conversas: Estas devem estar ligadas a um usuario e podem opcionalmente estar
ligadas a um cliente ou a uma tarefa.

+ Tarefas: Cada tarefa deve pertencer a um usuario e a um cliente obrigatoriamente.

+ Clientes: Podem estar associados a conversas e tarefas, mas essa associa¢ao € opci-
onal para conversas e obrigatéria para tarefas

Figura 5 - llustracdao do Diagrama de Entidade-
Relacionamento do Banco de Dados

identification INT

*name VARCHAR(255)
email ¥ARCHAR(255) _
phone VARCHAR(255)

| statuses v
identification INT
sname VARCHAR(255)
I~ — description VARCHAR{255)
| color VARCHAR{255)
users v
j I # created_at DATETIME
identificaion INT | >
name VARCHAR(255) _
= :] teams v
> email VARCHAR{255)
identification INT
photo LOMGTEXT
»name W ARCHAR{255)
@ fk_team_identification INT Bl— ———— — — —— H
description W ARCHAR{255)
@ fk_statuses_identification INT
> created_at DATETIME
> task _limit INT =
»is_admin TINYINT (1) +-————— |
> created_at DATETIME |
- |
: |
T |
| |
[|
| |
Ny |
A |
1 talks v |
e L
identification INT ™
& fi_users_identification INT | tasks v
»message LONGTEXT identification INT
* type VARCHAR(255) imsue VARCHAR(255)
url VARCHAR{255) - description V ARCHAR (255)
————— H
2 from _me TINYINT{1) 2 priority_level INT
» whatsapp_identification VARCHAR(255) #is_it_solved TINYINT(1)
2 fk_tasks_identification INT resolution _details V ARCHAR(255)
2 fk_dlients_jdentification INT @ fk_dients_identification INT
> created_st DATETIME T fi_users_identification INT
> I »is_feedback TINYINT(1)
W I » created_at DATETIME
|
»
I |
| |
| |
+ |
! |
| dients v |
|
|
|
|

> created_at DATETIME
»>

Fonte: Autoria propria (2023).

55

56

3.3 Desenvolvimento

Um projeto de grande porte pode ser decomposto em diversas partes menores, cada
uma com seu préprio ciclo de planejamento, design, construcao e teste. Essas partes menores
sao conhecidas como iteragdes e tém uma duracao fixa, por exemplo, quatro semanas. Ao final
de cada iteragdo, uma parte funcional do sistema é entregue. Esse processo é semelhante
a construcdo de uma casa, em que, em vez de construir tudo de uma vez, os cOmodos sao
construidos um de cada vez, com a certeza de que cada parte esta correta antes de avangar
para a proxima. Esse método é conhecido como desenvolvimento iterativo (LARMAN, 2001).

3.3.1 Autenticagao

Na secdo de modelagem, ao abordar os casos de uso, observou-se que todos eles
exigem que o usuario esteja autenticado no sistema. Portanto, a se¢cdo de desenvolvimento
comeca com essa sequéncia fundamental de acdes no aplicativo. Para simplificar o processo
de autenticagao, utilizou-se a ferramenta Firebase Authentication, desenvolvida pelo Google.

3.3.1.1 Login

Na Figura 6 da pagina 57, é possivel visualizar a tela de Login, criada usando os recur-
sos gréaficos do Tailwind. Aqui, o usuario é solicitado a inserir seu e-mail e senha previamente
cadastrados.

No caso em que o usuario insira um e-mail ndo registrado ou digite uma senha incor-
reta, o sistema exibird uma mensagem acima do campo de e-mail, em vermelho: “Usuario ndo
encontrado. Por favor, contate o suporte em caso de problemas com o servidor.*

Além disso, o sistema oferece dois hyperlinks, um para o registro no sistema e outro
para a recuperagao de senha.

57

Figura 6 — llustracao da tela de Login

Entre com a sua conta

Qu
Registre-se gratuitamente.

Esqueceu a suasenha?

Fonte: Autoria propria (2023).

3.3.1.2 Register

A tela de registro solicita trés informagodes basicas para a autenticacao inicial: endereco
de e-mail, senha e confirmagéo de senha. Além disso, incorporou-se o plugin chamado “zxcvbn*
para avaliar a qualidade da senha. Para que uma senha seja considerada valida, ela deve conter
no minimo 4 caracteres, incluindo pelo menos uma letra maiuscula, uma letra minuscula e um
namero. A Figura 7 da pagina 58, ilustra essa tela de registro:

Erros possiveis durante o preenchimento e envio do formulario nesta pagina séo indica-
dos em vermelho e incluem:

» Senha nao atende aos requisitos minimos: “A senha deve conter pelo menos 4 carac-
teres, 1 letra mailscula, 1 letra mindscula e 1 nimero.“;

» Senha na caixa “Confirmar senha“ ndo coincide com a senha inserida no campo “Se-

[

nha“: “As senhas nao coincidem.*;
» E-mail ja cadastrado inserido no campo “E-mail“: “Este e-mail ja esta em uso.%;
» E-mail invalido no campo “E-mail“: “Este e-mail nao é valido.";

+ Erro de permissdo ao cadastrar um novo usuéario no Firebase Authentication: “Nao é
possivel criar usuarios.”;

58

Figura 7 — llustracao da tela de Registro

Cadastre a sua conta

Cu
Possui uma conta, entre agui.

Criar conta

Fonte: Autoria propria (2023).

» Senha enviada para o Firebase Authentication é considerada fraca: “A senha é muito
fraca.”

3.3.1.3 ForgotPassword

A tela de recuperacao de senha possui apenas um campo para inser¢ao do e-mail. A
Figura 8 da péagina 59, seguinte ilustra essa tela:

O processo de recuperagao de senha é administrado pelo Firebase Authentication. A
ferramenta envia um e-mail para o endereco informado, caso ele esteja cadastrado, contendo
um link de redirecionamento para a tela de configuragdo de senha, mostrada na Figura 9 na pa-
gina 59. Nessa nova tela, o usuario define sua nova senha, e a ferramenta realiza a substituigao
das senhas.

Se o0 e-mail for enviado com sucesso, 0 sistema mostrara a seguinte mensagem em
verde: “E-mail enviado com éxito. Por favor, verifigue sua caixa de entrada. Redirecionando
para a tela de login em 5 segundos.”

Possiveis erros durante o preenchimento e envio do formulario nesta pagina sao desta-

cados em vermelho e incluem:

59

Figura 8 — llustracao da tela de Recuperacao de senha

Esqueceu a sua senha?

Cu
Voltar para tela de login

Enviar e-mail de recuperagio de senha

Fonte: Autoria propria (2023).

Figura 9 — llustracéo da tela de definicdo da nova se-
nha

Reset your password

for (P @hotmail.com

New password

| ®

Fonte: Autoria propria (2023).

E-mail invalido no campo “E-mail®: “Este e-mail n&o é valido.*;
E-mail informado nao cadastrado: “Este e-mail ndo esta cadastrado.”;

Tentativa de envio do formulario sem preencher o campo “E-mail“: “Por favor, informe

seu e-mail.”;

Erro do Firebase Authentication ao tentar enviar o e-mail: “Ocorreu um erro ao enviar

o e-mail. Entre em contato com o suporte sobre o erro: “

60

3.3.1.4 Sistema de atendimentos

A primeira fungao desse sistema é a chamada “createTalkWebHook", demonstrada na
Listagem 7 na pagina 61, que € responsavel por lidar com uma solicitagdo de webhook de
forma assincrona. Todas as fungdes que devem possuir um corpo como dos tipos POST e
PATCH, possuem uma verificacdo se o corpo da solicitacao esta vazio ou invalido e, se for o
caso, retorna um cédigo de status 400 com uma mensagem de erro.

Em seguida, a funcao extrai informacgdes relevantes do corpo da solicitagdo, como nome
de quem enviou, destinatario, tipo de mensagem e conteido da mensagem. Ela usa essas in-
formacdes para pegar detalhes da conversa, legenda e URL da mensagem. A fungao também
chama outras trés fungdes, “checkForEspecialist”, “checkForClientinfo” e “checkForUserTaskAc-
tiveNumber”, para obter os valores de identificagdo associados ao remetente e ao destinatério.
Ambas as fungdes “checkForEspecialist” e “checkForUserTaskActiveNumber” serdo explicadas
com detalhes no texto da proxima funcionalidade, Auto-Atribuicdo de Conversas.

A funcdo chamada “checkForClientInfo“, também é assincrona que recebe dois parame-
tros: “whatsappldentification“ e “name*. Sua fungao principal é encontrar um cliente no banco
de dados usando o método “findOne” e retornar o cliente, caso exista. Se o cliente nao existir e
um parametro “name* for fornecido, a fungao cria um novo cliente no banco de dados usando o
método “create” e retorna o cliente recém-criado.

Para realizar isso, a funcéo utiliza a opcao “where” para especificar a condicdo da con-
sulta e a opcao “limit“ para limitar o resultado a uma unica linha. Se o cliente ndo for encontrado
e um parametro “name* for fornecido, a fungéo criara um novo cliente no banco de dados usando
0 método “create”. Esse método é usado para inserir uma nova linha na tabela de clientes, com
os atributos “name* e “phone” definidos com os valores fornecidos.

Além disso, a funcao utiliza a fungéo “checkForActiveTasks” para obter informagdes re-
lacionadas a tarefa ativa associada ao destinatario.

Por fim, a fungéo “createTalkWebHook* cria um novo registro de conversa no banco
de dados usando o método “create” e retorna um cédigo de status 201 se a criagédo for bem-
sucedida. Se ocorrer algum erro, ela retorna um cédigo de status 500 com uma mensagem de
erro. Esta fungcdo também emite um evento através do socket.io para atualizar as conversas.

Listagem 7 — Entrada para novas conversas vindas do WhatsApp

export async function createTalkWebHook (req, res) {
try {

— —
0O OWoONOOPRWN—

N aaaa
SQOwWooNoOTOIRhWN

NN
N_L

WNNNNDN NN
QOWONOOOITR~W

wWw
I\J_L

OQAOADDDPDAPADRPADRARRNOOOWOWWWW
0 OWONOOPWN—2LOOONOOIAW

a1,
OO WN

()19, X¢)]
O oo~

// Validate request

if (!req.body || Object.keys(req.body).length === 0) {
return res.status(400).send({

message: exceptions.emptyBody ()

1)

}

if (!req.body.data) {

return res.status(400).send({
message: exceptions.emptyData()
1)
}

const {
pushName,
key: { remotedid },
messageType,
msgContent

} = req.body.data;

const { conversation, caption, url } =
msgContent || msgContent[messageType];

const message =

messageType === ’conversation’ ? conversation : caption || "’;
const finalUrl = messageType === 'conversation’ ? null : url;
let userldResult = await checkForEspecialist(remotedid);

const clientldResult = await checkForClientinfo (remotedid, pushName);

if (luserldResult) {
userldResult = await checkForUserTaskActiveNumber ();

}
const taskldentification = await checkForActiveTasks (remotedid);

// Save Talk in the database
const talk = await talks.create ({

fk_users_identification: userldResult || 1,
fk_clients_identification: clientldResult || null,
message,

fk_tasks_identification: taskldentification,
whatsapp_identification: remotedid,

url: finalUrl ,

type: messageType,

from_me: false

1

io.emit(’talks’, "Atualizar conversas’);

return res.status(201).send(talk);

catch (err) {

return res.status(500).send({

message: exceptions.createError(’Conversa’, err.message)

1

Fonte: Autoria propria (2023).

0N O WN =

N = =4 a4 a4 4 a a
O O©W oo N O~ WDN-—=- OO

62

Listagem 8 — Checagem de tarefas ativas relacionadas ao nimero de WhatsApp

async function checkForActiveTasks (phone) {
const previousTalk = await talks.findOne ({
where: {
whatsapp_identification: phone,
fk_tasks_identification: {
[Op.not]: null
}
b
order: [[’created_at’, 'DESC’]]
1)

if (previousTalk) {
const task = await tasks.findByPk(previousTalk.fk_tasks_identification);
if (!task.is_it_solved) {
return task.identification;

return null;

Fonte: Autoria propria (2023).

63

Apos essa etapa inicial de cadastro do cliente, cadastro da conversa e verificacdo de
quem € o analista mais adequado para ser responsavel pelo atendimento, quem foi designado
deve iniciar uma nova tarefa, selecionando qual mensagem deve ser considerada o comecgo da
tarefa dando um clique em cima da mensagem, isso fara que a mensagem fique destacada com
uma borda verde.

Em seguida, o analista deve utilizar um botdo presente na tela de conversa com um
cliente, que abrira o formulario de criagdo de tarefas demonstrado na Figura 10.

Figura 10 - llustracao do formulario de criacao de ta-
refa

Nova tarefa

Identificagdo: MNome da tarefa:

Esta resolvido:

Descrigdo:

Responsav Prioridade: Cliente: -
N N v

Detalhes da resolugdo:

X Cancelar

Fonte: Autoria propria (2023).

Caso nao seja possivel para o sistema cadastrar o cliente utilizando a fungao “checkFor-
ClientInfo”, esse mesmo botao sera substituido por um botédo similar que levara ao assistente
para o formulério de criagcao de clientes, demonstrada na Figura 11 na pagina 64.

64

Figura 11 — llustracao do formulario de criacao de cli-
ente

Novo cliente

Identificagdo: MNome:

E-mail: Celular:

Fonte: Autoria prépria (2023).

Apés terminar o cadastrado de uma nova tarefa o sistema utilizara a fungéo “checkFo-
rActiveTasks®, toda vez que receber ou enviar uma nova mensagem.

A funcao assincrona chamada “checkForActiveTasks”, demonstrada na Listagem 8 na
pagina 62, recebe um parametro “phone®. A fung¢édo tem a finalidade de encontrar a conversa
mais recente associada ao telefone fornecido e a uma identificagio de tarefa (fk_tasks_identifi-
cation) nao nula, usando o método “findOne*“.

Se a conversa existir e a tarefa associada nao estiver resolvida, a fungéo retorna o atri-
buto “identification” da tarefa. Se a conversa néo existir ou a tarefa associada estiver resolvida,
a funcao retorna “null”.

Para fazer isso, a fungao utiliza a opg¢ao “where” especificando a condigdo da consulta,
a opcao “order” classificando o resultado com base no atributo “created_at“ em ordem decres-
cente, e a op¢ao “include” incluindo a tarefa associada no resultado. A fung&o utiliza o operador
“Op.not“ que especifica que o atributo “fk_tasks_identification“ ndo deve ser nulo. Isso garante
que todas as novas mensagens sejam relacionadas com essa nova funcao.

Apos a realizagao do atendimento, o analista de suporte pode encerrar a conversa fa-
zendo a mesma selecdo, sé que agora para indicar onde a tarefa terminou, e clicar no botao de
encerrar atendimento. Isso fara que o sistema atualize a tarefa ativa como resolvida, e todas as
mensagens posteriores a escolhida, terdo o campo “fk_tasks_identification® igual a “null®.

O ideal seria que o analista ap6s o encerramento da tarefa, utilizasse a tela de edicao
da tarefa para informar os detalhes da solugao encontrada para o problema. Mas o sistema nao
obriga o analista a informar esses detalhes.

65

Aqui esta uma demostragcao na Figura 12 de como as mensagens recebidas pelo What-
sApp € apresentada no aplicativo, e o equivalente no WhatsApp Desktop na Figura 13:

Figura 12 — llustracao da conversa no aplicativo

L] 16:38

Ol4, esta mensagem & um teste para iniciar um conversa no NekoChat

Admin 16:38

Esta mensagem é um teste para a resposta de um analista no NekoChat

- 16:40

Esta mensagem marca o prosseguimento da conversa com o atendente no NekoChat.

Admin 16:40

Esta mensagem marca o prosseguimento da conversa com o cliente no NekoChat.

- 1641

Esta mensagem marca o encerramento da conversa com o atendente no NekoChat.

Admin 16:41

Esta mensagem marca o encerramento da conversa com o cliente no NekoChat.

Digite sua mensagem aqu

Usuario para transferir: L. . -
Selecione um(a) ususrio para transferir Usuério responsavel: Administrador

Fonte: Autoria propria (2023).

Figura 13 - llustracao da conversa no WhatsApp
Desktop

Ola, esta mensagem € um teste para iniciar um conversa no MekoChat

Esta mensagem & um teste para a resposta de um analista no NekoChat

Esta mensagem marca o prosseguimento da conversa com o atendente no NekoChat.

Esta mensagem marca o prosseguimento da conversa com o cliente no MekoChat.

Esta mensagem marca o encerramento da conversa com o atendente no NekoChat.

Esta mensagem marca o encerramento da conversa com o cliente no NekoChat.

Fonte: Autoria propria (2023).

0O NOoO Ok~ WO =

_
A WODND =2 O ©

Listagem 9 — Checagem usuarios responsaveis anteriormente pela conversa

66

async function checkForEspecialist (whatsappldentification) {
const result = await talks.findOne ({
where: {
whatsapp_identification: whatsappldentification
b
attributes: [’/ fk _users_identification’],
order: [[’created at’, 'DESC’]],
limit: 1

1)

return result !== null
? JSON.parse (JSON. stringify (result)).fk_users_identification
result;

Fonte: Autoria propria (2023).

3.3.1.5 Auto-Atribuicdo de Conversas

Como foi informado na Ultima sessao, aqui serao explicadas as funcdes responsaveis por

fazer o balanceamento inicial das conversas entre os analistas de suporte, “checkForEspecialist®

e “checkForUserTaskActiveNumber“. Sobre a “checkForEspecialist” descrita na Listagem 9, é

uma fungao assincrona que recebe o parametro “whatsappldentification*.

Ela tem a finalidade de encontrar a conversa mais recente associada a identificacdo do

WhatsApp fornecida, utilizando o método “findOne“, e retorna o atributo “fk_users_identification®

dessa conversa, se existir. Se a conversa nao existir, a fungao retorna “null“. A ideia é que se

a conversa possuir anteriormente um usuario que foi responsavel por ela, o sistema considera

esse usuario como um especialista sobre aquele cliente.

Para fazer isso, a fungao utiliza a opg¢ao “where” para especificar a condi¢cdo da consulta,

a opcao “attributes” para determinar quais atributos incluir no resultado, a opcao “order” para

classificar o resultado com base no atributo “created_at” em ordem decrescente, e a opcao

“limit* para limitar o resultado a uma anica linha.

Caso o sistema nao encontre um usuario considerado como “especilista“, ele executa a

funcédo “checkForUserTaskActiveNumber®, descrita na Listagem 10 na pagina 67, que € assin-

crona e tem como objetivo encontrar a identificagdo de um usuario com tarefas ndo resolvidas

abaixo do limite permitido.

Primeiramente, ela procura todos os usuarios com um status de “ativo” (representado

pelo valor 1) usando o método “findAll*. Em seguida, ela obtém a identificacdo e o limite de

tarefas (task_limit) de cada usuario e classifica o resultado com base na data de criagdo, em

ordem decrescente. A ideia é sempre passar primeiro por usuario senior. Se nenhum usuario

for encontrado, a funcao retorna “null.”

0O NOoO Ok~ WO =

DO N MNDOMNODNDODNODN L 2 a4 A A —a
0O N O, OWN—-OCO0ONOOOOOPS~WDNDM - OO

67

Listagem 10 — Checagem usuarios disponiveis para receber a nova conversa

async function checkForUserTaskActiveNumber () {
const usersData = await users.findAll ({
where: {
fk_statuses_identification: 1

I

attributes: [’"identification’, ’"task_limit’],
order: [[’created at’, 'DESC’]]
1)

if (usersData === null) {
return null;

for (const user of usersData) {
const result = await tasks.findAndCountAll ({
where: {
fk_users_identification: user.identification ,
is_it_solved: false
}
1)

if (result.count < user.task_limit) {
return user.identification;

return null;

Fonte: Autoria propria (2023).

Para cada usuario encontrado, a fungao verifica o nimero de tarefas nao resolvidas
associadas a esse usuario usando o método “findAndCountAll.“ Ela obtém a identificacdo do
usuario (fk_users_identification) e o estado de resolucéo da tarefa (is_it_solved).

Se o numero de tarefas nao resolvidas associadas a esse usuario for menor do que o
limite de tarefas permitido para o usuario (task_limit), a funcao retorna a identificacdo desse
usuario.

Se nenhum usuario for encontrado com tarefas nao resolvidas abaixo do limite permitido,
a funcao também retorna “null.”

Essa funcédo tem como objetivo encontrar um usuario ativo que tenha capacidade para
receber uma nova conversa, considerando que suas tarefas ndo resolvidas estejam dentro do
limite permitido. Caso nenhum dessas fungdes encontre um usuario disponivel para receber o
atendimento, a fungéo “createTalkWebHook" ira atribuir a conversa para o administrador (repre-
sentado pelo usuario com numero de identificagdo 1), que ficara responsavel por transferir a
conversa posteriormente para um dos analistas.

68

3.3.1.6 Garantia de Qualidade

O sistema de garantia de qualidade tem poucos passos para iniciar. Quando um usuario
que possui a flag is_admin marcada, o sistema ira optar para realizar a chamada da funcao
“findAllTalks”, demostrada na Listagem 11 na pagina 69, que realiza uma chamada da API para
o servidor buscar todas as mensagens cadastradas no servidor. E caso a flag esteja desabili-
tada, o sistema ird chamar a funcao findAllTalksByUser que limita a busca pelo identificador do
usuario. Essa verificagéo é feita pela fungéo “fetchTalks®, demostrada na Listagem 12 na pagina
69,.

A funcao “findAllTalks" € uma funcao assincrona que obtém uma lista de conversas de
um servidor remoto e preenche o objeto de conversas (talks) com os dados recuperados. O
que ela faz é enviar uma solicitagdo GET para o servidor em uma URL especifica usando a
API de busca (fetch), com o cabecalho Content-Type configurado como application/json. Se a
solicitacdo for bem-sucedida, a resposta é analisada usando o método response.json(), e 0s
dados resultantes sdo usados para preencher o objeto de conversas (talks). Esse objeto “talks®
€ uma estrutura que associa nimeros de identificacao do WhatsApp a objetos de conversa. Se
a solicitacdo falhar, qualquer erro é registrado no console e o usuario é redirecionado para a
pagina de erro 404 usando a fungao router.push.

Isso permite que o administrador visualize e interaja com qualquer conversa, mesmo se
ela estiver atribuida a outro usuéario. O administrador também possui algumas outras opgdes
que usudrio normais ndo tem, a mais relevante é a atribuicdo manual da conversa para outro
usuario. Essa opgao permite ao administrador transferir a visualizagdo da conversa atual para
outro, e assim retirar do usuario anterior o poder de visualizar ou interagir com a conversa. Na
Figura 14 é possivel ver a area de interagao disponivel para um administrador em uma conversa.

Figura 14 — llustracao da tela de conversa

Digite sua mensagem acui:

Usudrio para transferir: _ . o .
Selecione um(a) usudrio para transferir

Fonte: Autoria propria (2023).

0O N O~ WO =

ND DO MDD MNMMNDMN 2L 4 a4 a4 a4 a a
OO R WON-—-2 O O0C0ONOOOOTRAWDN—=OOO

69

Listagem 11 — Verificagcdo se o usuario é ou nao administrador

async function findAllTalks () {

const url = GCurl + ‘‘talks ' ‘;
try {
const response = await fetch(url, {
method: ‘‘GET"‘,
headers: {
‘‘Content-Type‘ ‘: ‘‘application/json ‘"’

}
1)
const data = await response.json();
if (data) {
talks .value = {};
for (const talk of data) {
talks .value[talk.whatsapp_identification] = talk;

}

return;
} catch (error) {
console.error(error);
router.push ({
name: ‘‘404Resource ‘",
params: { resource: ‘‘chamada encontrar conversa‘‘ }

1)

Fonte: Autoria propria (2023).

Listagem 12 — Verificagcao se o usuario é ou nao administrador

function fetchTalks () {

userStore.user.is_admin ? findAllTalks () : findAllTalksByUser ();

Fonte: Autoria propria (2023).

70

3.3.1.7 Feedback Loop

A funcionalidade de feedback foi projetada para se integrar ao sistema de gerenciamento
de tarefas ja existente. Em termos de interface, ela usa as mesmas telas que o sistema de
tarefas convencional demonstrada na Figura 10 na pagina 63, com a principal diferenga sendo
a localizacédo do botédo para criar uma nova entrada, presente no menu lateral da tela principal.
Neste caso, o botdo serve para adicionar uma “tarefa de feedback".

No sistema, as tarefas de feedback sdo automaticamente enviadas para um time de
desenvolvimento especifico. Este time é responsavel por avaliar e decidir quais delas sao rele-
vantes e que alteracbes sugeridas deverdo ser implementadas. Para diferenciar tarefas comuns
de tarefas de feedback, uma bandeira € usada na tabela de tarefas. Isso foi especificado no
diagrama de entidade de relacionamento do projeto, demonstrado na Figura 5 na pagina 55.
Essa bandeira é responsavel por diferenciar para o sistema entre os dois tipos de tarefas.

Outro detalhe é que, ao criar uma tarefa de feedback, a opcao de escolher um time di-
ferente para aloca-la esta desabilitada. O time de desenvolvimento responsavel ja é predefinido
pelo sistema.

3.4 Testes

Esta secao é utilizada para relatar os testes realizados para confirmar que as implemen-
tagoes realizada no sistema desempenhe o papel necessario para as funcionalidades descritas
anteriormente. O método utilizado para realizar os testes foi o de Testes Unitarios, com a fer-
ramenta Jest (v29.6.4). Como explicado anteriormente no Capitulo 2, Sommerville (2011) diz
os testes unitarios tem o foco em testar componentes do sistema individualmente, onde as fun-
coes e métodos sdo os componentes mais simples do programa. E também foi comentado no
Capitulo 2, que Sommerville (2011) recomenda a utilizagdo de frameworks de automacao para
escrever e executar testes, pois eles sdo capazes de executar todos os testes implementados e
repotar resultados.

Apbs a implementacao e execucao dos testes pelo Jest, é possivel visualizar algumas
estatisticas relevantes sobre a cobertura oferecida pelos testes em relagéo a diferentes arquivos
e ao codigo como um todo, demonstrado na Figura 15.

71

Figura 15 — llustracdo da cobertura de testes unita-
rios

test/controllers/talks.test.js
ontrollers/users.test.js

clients.test.js

statuses.test.js
database/scripts/db.populate.test. js
/utils/exceptions.test.js

NekoBack

server.js
NekoBack/controllers
clients.js

statuses.js

talks.js

tasks.js

teams. js

users.js
NekoBack/database/config
db.config.js
NekoBack/database/models
clients.model. js
db.model.js
statuses.model. js
talks.model. js
tasks.model. js

teams .model. js
users.model. js
NekoBack/database/scripts
db.populate. js
NekoBack/routes
clients.js

statuses.js

talks.js

tasks.js

teams.js

users.js
NekoBack/utils
exceptions.js

28 ggn

-
-

&
PR pppRpRRRRRRR R R o B

2832882323888 88

YUSYY3388383F 33888888
2o é é

Y
3EEEE

=
=

Test Suites: 8 passed, 8 total
Tests: 295 passed, 295 total
Snapshots: @ total

Time: 6.933 s

Ran all test suites.

Fonte: Autoria propria (2023).

E possivel separar aimagem em trés sessdo menores, que demonstra diferentes dados.
Comecando uma analise de cima para baixo, na Figura 16 é possivel ver quais arquivos foram
adicionados para realizar os testes. A separagao utilizada na criagcao dos arquivos é semelhante
aos que eles estao testando, onde os arquivos dos controladores, dos scripts do banco de dados
€ 0 arquivo utilitario estao separados por pastas. Também ¢é informado em verde que todos os
testes implementados nesse arquivos resultaram no era esperado deles.

Figura 16 — llustracdo dos arquivos cobertos pelos
testes unitarios
A test/controllers/clients.test.js

PASS

PASS

PASS

PASS P lients.test.js
PASS i s /users.test.js
PASS P rs/tasks.test.js
PASS § tatuses.test.js

ISy test/database s/db.populate.test.js
sy test/utils/exceptions.test.js

Fonte: Autoria propria (2023).

72

Nos registros dos controladores, foram conduzidos testes para verificar as operagdes de

cadastro, busca, atualizacdo e exclusao dos dados relacionados a cada modelo de entidade no

banco de dados.

Os principais testes elaborados para esses cenarios foram consolidados na

lista a seguir. Para facilitar a legibilidade, a lista foi organizada de forma a destacar os testes

que se repetiram em diversos modelos de entidade:

e Cadastro:

e Busca:

Deve criar uma entidade.

Deve retornar a entidade criada.

Deve retornar a entidade criada com identificagdo.

Deve enviar uma mensagem de midia.

Deve retornar a entidade criada com a identificacdo de entidade estrangeira.

Deve retornar um erro se vocé tentar criar uma nova entidade com os mesmos
dados.

Deve retornar um erro se vocé tentar criar uma nova entidade com o corpo

vazio.

Deve retornar um erro se vocé tentar criar uma nova entidade com o nome
vazio.

Deve retornar um erro se vocé tentar criar uma nova entidade com o e-mail
vazio.

Deve retornar um erro se vocé tentar criar uma nova entidade com a mensa-

gem vazia.

Deve retornar um erro se vocé tentar criar uma nova entidade com a identifi-

cacao de WhatsApp vazia.
Deve retornar um erro se vocé tentar criar uma nova entidade com o tipo vazio.

Deve retornar um erro se vocé tentar criar uma nova entidade com a descrigcao

vazia.

Deve retornar um erro 500 usando um mock.

Deve encontrar uma entidade.

Deve retornar a entidade encontrada.
Deve encontrar todas as entidades.
Deve retornar as entidades encontradas.

Deve conter a entidade criada.

73

— Deve encontrar todas as entidades pela chave estrangeira da entidade.

— Deve retornar um erro se vocé tentar encontrar uma entidade com um ID

vazio.

— Deve retornar um erro se vocé tentar encontrar uma entidade com um ID
invalido.

— Deve retornar um erro se vocé tentar encontrar todas as entidades e a lista

estiver vazia.

— Deve retornar um erro se vocé tentar encontrar uma entidade com o email

vazio.

— Deve retornar um erro se vocé tentar encontrar uma entidade com um email
invalido.

— Deve retornar um erro se vocé tentar encontrar todas as entidades com um ID

vazio.

— Deve retornar um erro se vocé tentar encontrar uma entidade com um ID de
entidade estrangeira invalido.

— Deve retornar um erro 500 usando um mock.
+ Atualizacéo:

— Deve atualizar a entidade criada.

— Deve atualizar uma entidade.

— Deve receber uma mensagem confirmando que a entidade foi atualizada.
— Deve retornar a entidade atualizada.

— Deve retornar um erro se vocé tentar atualizar uma entidade estrangeira que
n&o existe vinculada a uma entidade.

— Deve retornar um erro se vocé tentar atualizar uma entidade com os mesmos

campos pelos quais ja esta registrada.

— Deve retornar um erro se vocé tentar atualizar uma entidade com o corpo

vazio.
— Deve retornar um erro se vocé tentar atualizar uma entidade com o ID vazio.

— Deve retornar um erro se vocé tentar atualizar uma entidade com um ID inva-
lido.

— Deve retornar um erro se vocé tentar atualizar uma entidade com um campo
vazio dentro do corpo.

— Deve retornar um erro 500 usando um mock.

74

» Exclusao:

Deve excluir uma entidade.

Deve retornar a entidade excluida.

Deve excluir a mensagem de midia.

Deve retornar um erro se vocé tentar excluir uma entidade duas vezes.

Deve retornar um erro se vocé tentar excluir uma entidade com um ID vazio.

Deve retornar um erro se vocé tentar excluir uma entidade com um ID invalido.

Essa cobertura de testes foi criada com objetivo de averiguar que todas as fungdes dos
controladores retornem os resultados esperados mesmo se forem propositalmente sabotados
por uma falha de outras fungdes ou pelo envio de entradas erradas, alinhando com o que Som-
merville (2011) explica sobre os objetivos dos testes unitarios.

Os testes unitarios criados para o script responsavel por popular o banco de dados com
algumas entidades padrdes foram consolidados na lista a seguir. Diferente dos controladores

os testes necessarios para o script ndo foram tdo complexos:

» Deve popular o banco de dados com entidades padrao.
* N&o deve popular o banco de dados com entidades padrao.

» Deve retornar um erro ao tentar popular o banco de dados com entidades padréo.

E, por ultimo, o arquivo de excegdes foi submetido a apenas dois tipos de testes. O
primeiro verifica se a fungdo recebeu os pardmetros, enquanto o segundo verifica se a fungéao
nao recebeu parametros.

Nao foram elaborados testes adicionais devido a explicacao fornecida por Sommerville
(2011), que argumenta ao testar uma fungéo que envolve célculos e requer dois nimeros positi-
VoS, é razoavel esperar que o programa funcione de maneira semelhante para todos os numeros
positivos.

Essa mesma explicacéo foi utilizada na decisao de ndo construir testes para os arquivos
de rotas, pois eles fariam 0 mesmo percurso de testes que os controladores dado que a fungéo
deles é disponibilizar os controladores para API.

Ao prosseguir com a analise da Figura 15 na pagina 71, vem a sec¢ao estatistica da
cobertura de codigo. Nessa sec¢do, demonstrada pela Figura 17 na pagina 76, € possivel vi-
sualizar a porcentagem de cobertura tanto para todos os arquivos quanto para cada um deles
individualmente. As porcentagens indicam os seguintes elementos:

» Ramos (representados como ’Branches’) sdo declara¢des condicionais cujas condi-

¢cOes foram satisfeitas pelo menos uma vez durante os testes unitarios.

75

» Funcgdes (representadas como 'Funcs’) sao fungdes que foram chamadas pelo menos

uma vez durante os testes unitarios.

« Linhas (representadas como ’Lines’) sdo linhas de cédigo que foram executadas pelo
menos uma vez durante os testes unitarios.

» Declaracdes (representadas como 'Stmts’) sao instrugdes que foram executadas pelo
menos uma vez durante os testes unitarios. Por exemplo, uma Unica linha pode conter
duas declaracdes.

E por ultimo, as Linhas Nao-Cobertas (identificadas como ‘Uncovered Line #s’), que se
referem as linhas de cédigo em que nenhum teste foi executado. E notavel que no arquivo
“controllers/talks.js®, ha varias linhas que ndo foram submetidas a testes. Isso ocorre devido ao
fato de estarem contidas em funcdes que ndo sdo exportadas pelo arquivo, uma vez que sao
destinadas ao uso interno por outras fungdes.

Mesmo que sejam criados casos de teste para as fungdes que as chamam, a cobertura
dessas linhas seria desafiadora, pois se destinam a excecdes muito especificas.

Outro ponto de observacao é que todos os arquivos, com excecdo das rotas, do con-
trolador das conversas e do iniciador do servidor, apresentam uma cobertura completa. Isso
indica que foram desenvolvidos testes para todas as possibilidades de execugéo de cada linha
de cddigo.

76

Figura 17 — llustracdo das estatistica da cobertura
dos testes unitarios

B

NekoBack

server.js
NekoBack/controllers
clients.js

statuses.js

talks.js

tasks.js

teams. js

users.js
NekoBack/database/config
db.config.js
NekoBack/database/model s
clients.model. js
db.model. js
statuses.model. js
talks.model.js
tasks.model.js
teams.model. js
users.model. js
NekoBack/database/scripts
db.populate.js
NekoBack/routes
clients.js

statuses.js

talks.js

tasks.js

teams. js

users.js

NekoBack/utils
exceptions.js

S3L8¥

&
T T U AT,

2888833338 88888

-
P |

38888-88

=

Fonte: Autoria propria (2023).

Encerrando a andlise da Figura 15 na pagina 71, é possivel observar o numero total
de arquivos de testes, a quantidades de testes realizados e o tempo de execugéo deles, de-
monstrados na Figura 18. Foram 8 arquivos de testes, 295 testes criados e executados em um
periodo 6.933 segundos.

Figura 18 — llustracao das quantidades da cobertura
dos testes unitarios

Test Suites: & passed, 8 total
Tests: 295 passed, 295 total

Snapshots: @ total
Time: 6.933 s

Ran all test suites.

Fonte: Autoria propria (2023).

77

4 CONCLUSAO

A plataforma digital criada se dedicada a otimizagdo do gerenciamento de conversas
em equipe. Esta aplicagdo incorpora funcionalidades destinadas a alocag@o, monitoramento e
supervisdo de didlogos, proporcionando aos grupos de suporte a capacidade de registrar suas
interacdes com os clientes para fins de analise posterior.

Esse recurso capacita tanto os analistas de suporte quanto os administradores a exa-
minar, avaliar, analisar em detalhes, desmembrar e extrair conhecimento dessas interagdes,
visando a adaptacgao futura. Além disso, concede aos administradores a autoridade de interven-
¢ao, caso julguem necessario, durante ou apds o processo de atendimento.

Adicionalmente, a plataforma inclui um algoritmo de distribuicdo automatica das intera-
¢Oes recebidas, direcionando-as para os membros da equipe com base em critérios como a
carga de trabalho atual, especializagao na area tematica e histérico de desempenho. Estas mé-
tricas podem ser personalizadas pelo administrador da plataforma, proporcionando ferramentas
para o acompanhamento, avaliacdo qualitativa e controle das interagdes de suporte.

O resultado é a implementacao de um sistema robusto que simplifica a gestao e a distri-
buicao eficaz das conversas dentro da equipe, utilizando a troca de mensagens como o principal
meio de comunicagao.

A integracdo com o aplicativo WhatsApp proporcionou uma maior facilidade na comuni-
cagao com os consumidores, uma vez que este se revelou um meio amplamente utilizado pelos
brasileiros em sua rotina diaria, como indicado em uma pesquisa conduzida pela Opinion Box e
referenciada por Salgado (2022).

A selecao das tecnologias adotadas possibilitou a utilizacdo de uma linguagem de pro-
gramacao unificada tanto para o servidor quanto para a aplicacao cliente, o que resultou na
reducéo da curva de aprendizado durante o desenvolvimento deste projeto.

Além disso, a vibrante comunidade em torno do JavaScript viabilizou a integragéo de
ferramentas que desempenharam papéis cruciais no sistema, incluindo a modelagem de dados,
a comunicagao com o banco de dados, a otimizagao do processo de autenticagdo, a avaliagcao
da robustez das senhas cadastradas no sistema e a simplificacéo do desenvolvimento de testes
unitarios.

Embora o JavaScript é geralmente considerado uma linguagem de facil aprendizado
para iniciantes, porém, € importante destacar que a natureza assincrona e o gerenciamento de
eventos no Node.js podem apresentar desafios adicionais para desenvolvedores menos experi-
entes.

Também, a atengdo a performance do cddigo € fundamental, uma vez que o Node.js
nao é a escolha ideal para operacoes intensivas de CPU, pois isso pode resultar no bloqueio
do processamento de outras solicitagbes. Por ultimo, embora a comunidade JavaScript seja
ampla e ofereca muitas solugdes, é necessario ter em mente que algumas dessas solugdes

78

podem ser instaveis ou possuir documentacao insuficiente, o que requer cautela na escolha e
implementagéo de bibliotecas e frameworks.

E interessante notar que a curva de aprendizado inicial do Vue.js é relativamente curta,
gracas a sua capacidade de interagir diretamente com o contelddo da pagina de forma dinamica.
Isso possibilita a criacao de interfaces que podem alterar seus estados sem interromper o fluxo
de trabalho do usuario.

Por outro lado, o Tailwind CSS requer um periodo de adaptacao devido a sua abordagem
Unica na estruturacdo de estilos CSS. No entanto, uma vez superada essa fase inicial, a con-
veniéncia de organizar o codigo por meio de classes que representam mudangas na interface
simplifica a leitura e analise do cédigo implementado, tornando-o mais compreensivel e facil de
manter.

E compreensivel que, ao longo deste projeto, tenham sido implementados muitos recur-
sos engquanto outros desejaveis tenham sido deixados de lado, devido a complexidade ou a falta
de tempo. No entanto, essa abordagem possibilita melhorias futuras no sistema, ja que abre ca-
minho para a adigdo de médulos e funcionalidades que podem aprimorar significativamente o
valor do trabalho realizado.

A inclusao de recursos como a criacao de relatérios para a analise estatistica do desem-
penho das interagbes de suporte, a comunicacgao interna da equipe por meio do aplicativo, a
capacidade de registrar diretamente as opinides, reclamagdes e sugestdes dos consumidores,
bem como recursos para incentivar e reconhecer o alto desempenho dos membros da equipe
de suporte, certamente contribuiria para enriquecer ainda mais o sistema.

Uma atividade prospectiva adicional envolveria a submissao deste sistema a homologa-
cdo em contextos empresariais que albergam uma equipe de atendimento ao cliente, indepen-
dentemente do emprego do WhatsApp ou de outros meios de comunicacgao, a fim de corroborar
a suficiéncia do aplicativo em substituir o paradigma de atendimento previamente empregado
por tais entidades.

Por fim, este trabalho demonstra a habilidade do aplicativo em estabelecer uma comuni-
cagao eficaz com uma plataforma de mensagens amplamente adotada pelos consumidores no
pais. Além disso, ele oferece recursos essenciais para a gestao e distribuicdo das interagoes
com os clientes entre os membros da equipe de suporte que fazem uso dele. Isso ressalta a
possibilidade do aplicativo otimizar as opera¢des de suporte e melhorar a comunica¢do com 0s

consumidores.

79

REFERENCIAS

ASSOCIAGAO BRASILEIRA DE NORMAS TECNICAS. ABNT NBR 9000: Sistema de gestéo
da qualidade: Fundamentos e vocabulario. Rio de Janeiro, 2015. 3—4 p.

BAROT, T.; OREN, E. Communications and community on internet relay chat. Gitbooks, 2015.

BODET, G. Customer satisfaction and loyalty in service: Two concepts, four constructs, several
relationships. Journal of Retailing and Consumer Services, v. 15, n. 3, p. 156—-162, 2008.

BUDGEN, D. Software Design. 2. ed. [S./]: Pearson Education Limited, 2003. ISBN
0201722194.

CHEN, I. J.; POPQOVICH, K. Understanding customer relationship management (crm).
Business Process Management Journal, MCB UP Ltd, v. 9, n. 5, p. 672688, Out 2003. ISSN
1463-7154. Disponivel em: https://doi.org/10.1108/14637150310496758.

COCKBURN, A. Writing Effective Use Cases. Boston, MA: Addison-Wesley, 2001. ISBN
978-0-201-70225-5.

CRESSLER, C. Understanding WhatsApp’s Architecture & System Design. [S./], 2021.

EXPRESS.JS. Using middleware. [S./], 2023. Disponivel em: https://expressjs.com/en/guide/
using-middleware.html. Acesso em: 21/03/2023.

EXPRESS.JS. Web Applications. [S./.], 2023. Disponivel em: https://expressjs.com. Acesso
em: 21/03/2023.

FOWLER, M. UML Distilled: A Brief Guide to the Standard Object Modeling Language. 3.
ed. Boston, MA: Addison-Wesley, 2003. ISBN 978-0-321-19368-1.

GOOGLE PLAY STORE. WhatsApp Messenger. 2023. Disponivel em: https://play.google.
com/store/apps/details?id=com.whatsapp. Acesso em: 28/03/2023.

HERNANDEZ, M. J. Database Design for Mere Mortals®: 25th Anniversary Edition. 25th
anniversary edition. ed. [S./]: Addison-Wesley, 2021.

IBGE (Ed.). Acesso a internet e a televisao e posse de telefone movel celular

para uso pessoal 2021 / IBGE, Coordenacao de Pesquisas por Amostra de
Domicilios. Rio de Janeiro: IBGE, 2022. ISBN 9788524045431. Disponivel em: https:
//biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963. Acesso em:
01/04/2023.

https://doi.org/10.1108/14637150310496758
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com/en/guide/using-middleware.html
https://expressjs.com
https://play.google.com/store/apps/details?id=com.whatsapp
https://play.google.com/store/apps/details?id=com.whatsapp
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963
https://biblioteca.ibge.gov.br/index.php/biblioteca-catalogo?view=detalhes&id=2101963

80

KUMAR, A. et al. Measuring and improving customer retention at authorised automobile
workshops after free services. Journal of Retailing and Consumer Services, v. 39, p. 93-102,
2017.

LARMAN, C. Applying UML and Patterns: An introduction to Object-Oriented Analysis
and Design and the unified process. 2. ed. [S./]: Prentice Hall, 2001.

LARMAN, C.; BASILI, V. Iterative and incremental developments. a brief history. Computer,
v. 36, n. 6, p. 47-56, 2003.

MAIZE. A history of Instant Messaging and Chat. 2020. Disponivel em: https:
//www.maize.io/news/lizshemaria-historyof-instant-messaging/. Acesso em: 28/03/2023.

MDN. Express/Node introduction. [S./], 2023. Disponivel em: https://developer.mozilla.org/
en-US/docs/Learn/Server-side/Express_Nodejs/Introduction. Acesso em: 20/03/2023.

MDN. First-class Function. [S./], 2023. Disponivel em: https://developer.mozilla.org/en-US/
docs/Glossary/First-class_Function. Acesso em: 20/03/2023.

MDN. JavaScript. [S./], 2023. Disponivel em: https://developer.mozilla.org/en-US/docs/Web/
JavaScript. Acesso em: 20/03/2023.

MDN. JavaScript technologies overview. [S./], 2023. Disponivel em: https://developer.
mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview. Acesso em:
20/03/2023.

MESSEGER. MESSENGER - Tudo que vocé precisa saber. 2018. Disponivel em:
https://m.facebook.com/messengerfacts. Acesso em: 28/03/2023.

META. How WhatsApp enables multi-device capability. 2021. Engineering at Meta.
Disponivel em: https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/. Acesso
em: 28/03/2023.

MULLER, W. Gaining competitive advantage through customer satisfaction. European
Management Journal, v. 9, n. 2, p. 201-211, 1991. ISSN 0263-2373. Disponivel em:
https://www.sciencedirect.com/science/article/pii/0263237391900855.

NODE.JS. About Node.js. [S./.], 2023. Disponivel em: https://nodejs.org/en/about#about-node.
js. Acesso em: 21/03/2023.

NODE.JS. About this documentation. [S./], 2023. Disponivel em: https://nodejs.org/dist/
latest-v18.x/docs/api/documentation.html. Acesso em: 21/03/2023.

OLIVER, R. L. Effect of expectation and disconfirmation on postexposure product evaluations:
An alternative interpretation. Journal of Applied Psychology, v. 62, n. 4, p. 480-486, Aug
1977.

https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://www.maize.io/news/lizshemaria-historyof-instant-messaging/
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Glossary/First-class_Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://developer.mozilla.org/en-US/docs/Web/JavaScript/JavaScript_technologies_overview
https://m.facebook.com/messengerfacts
https://engineering.fb.com/2021/07/14/security/whatsapp-multi-device/
https://www.sciencedirect.com/science/article/pii/0263237391900855
https://nodejs.org/en/about#about-node.js
https://nodejs.org/en/about#about-node.js
https://nodejs.org/dist/latest-v18.x/docs/api/documentation.html
https://nodejs.org/dist/latest-v18.x/docs/api/documentation.html

81

OLIVER, R. L. Cognitive, affective, and attribute bases of the satisfaction response. Journal of
Consumer Research, v. 20, n. 3, p. 418-430, 1993.

OVERFLOW, S. Most used programming languages among developers worldwide as of
2022. 19-21 Hatton Gardens, London, EC1N 8BA, 2022.

PCMAG. Definition of memory footprint. 2023. Disponivel em: https:/www.pcmag.com/
encyclopedia/term/memory-footprint. Acesso em: 26/03/2023.

PCMAG. Messaging app. 2023. Disponivel em: https://www.pcmag.com/encyclopedia/term/
messaging-app. Acesso em: 28/03/2023.

PEREZ, S. Twitter now lets you opt in to receive direct messages from anyone. Techcrunch,
April 2015.

POSSELT, T.; GERSTNER, E. Pre-sale vs. post-sale e-satisfaction: Impact on repurchase
intention and overall satisfaction. Journal of Interactive Marketing, v. 19, n. 4, p. 35—-47, 2005.

REID, E. Communications and community on internet relay chat. Electropolis, 1991.

SALGADO, D. WhatsApp no Brasil: pesquisa revela dados sobre o comportamento do
brasileiro. 2022. Disponivel em: https://blog.opinionbox.com/pesquisa-whatsapp-no-brasil/.
Acesso em: 01/04/2023.

SHARMA, P. Offshore outsourcing of customer services — boon or bane? Journal of Services
Marketing, v. 26, n. 5, p. 352-364, Jan 2012.

SHERMAN, R. Chapter 18 - project management. In: SHERMAN, R. (Ed.). Business Intelli-
gence Guidebook. Boston: Morgan Kaufmann, 2015. p. 449—492. ISBN 978-0-12-411461-6.
Disponivel em: https://www.sciencedirect.com/science/article/pii/B9780124114616000186.

SHETH, J.; JAIN, V.; AMBIKA, A. Repositioning the customer support services: the next frontier
of competitive advantage. European Journal of Marketing, v. 54, n. 7, p. 1787—-1804, Jan
2020.

SHUERMANS, S.; VOSKOGLOU, C. The Global Developer Population 2019 - How many
developers are there? 19-21 Hatton Gardens, London, EC1N 8BA, 2019.

SIMPSON, C. Internet relay chat. Teacher Librarian, v. 28, n. 1, p. 18, 2000.

SINGH, M. Whatsapp is now delivering roughly 100 billion messages a day. Techcrunch,
October 2020.

SOMMERUVILLE, I. Engenharia de Software. 9. ed. [S./]: Pearson Education do Brasil, 2011.
ISBN 9788579361081.

https://www.pcmag.com/encyclopedia/term/memory-footprint
https://www.pcmag.com/encyclopedia/term/memory-footprint
https://www.pcmag.com/encyclopedia/term/messaging-app
https://www.pcmag.com/encyclopedia/term/messaging-app
https://blog.opinionbox.com/pesquisa-whatsapp-no-brasil/
https://www.sciencedirect.com/science/article/pii/B9780124114616000186

82

TECHTUDO. ICQ, MSN, SMS e WhatsApp: relembre a evolucao de mensagens e apps.
2019. Techtudo Redes socias. Disponivel em: https://www.techtudo.com.br/listas/2019/06/
icg-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml. Acesso em:
27/03/2023.

VUE.JS GUIDE. Introduction. [S./], 2023. Disponivel em: https://vuejs.org/guide/introduction.
html. Acesso em: 26/03/2023.

VUE.JS GUIDE. Lifecycle Hooks. [S./.], 2023. Disponivel em: https://vuejs.org/guide/
essentials/lifecycle.html. Acesso em: 27/03/2023.

WOOLLEY, D. R. Plato: The emergence of online community. Social Media Archeology and
Poetics, MIT Press, Cambridge, 1994.

https://www.techtudo.com.br/listas/2019/06/icq-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml
https://www.techtudo.com.br/listas/2019/06/icq-msn-sms-e-whatsapp-relembre-a-evolucao-de-mensagens-e-apps.ghtml
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/introduction.html
https://vuejs.org/guide/essentials/lifecycle.html
https://vuejs.org/guide/essentials/lifecycle.html

	Dedicatória
	Agradecimentos
	Resumo
	Abstract
	Lista de Figuras
	Listagem de Códigos Fonte
	Sumário
	Sumário
	1 Introdução
	1.1 Objetivos
	1.1.1 Objetivo geral
	1.1.2 Objetivos específicos

	2 Referencial teórico
	2.1 Atendimento ao consumidor
	2.2 Aplicativos de mensagens instantâneas
	2.2.1 WhatsApp

	2.3 Processo de Desenvolvimento
	2.3.1 Desenvolvimento Incremental
	2.3.1.1 História
	2.3.1.2 Aplicação na engenharia de software
	2.3.1.3 Entrega Incremental

	2.3.2 Engenharia de requisitos
	2.3.2.1 Elicitação e análise de requisitos
	2.3.2.2 Descoberta de requisitos
	2.3.2.3 Validação de requisitos
	2.3.2.4 Gerenciamento de requisitos

	2.3.3 Casos de uso
	2.3.3.1 História
	2.3.3.2 Partes do corpo de um caso de uso
	2.3.3.3 Formatos de casos de uso

	2.3.4 Testes
	2.3.4.1 Testes unitários

	2.4 Ferramentas de Desenvolvimento Web
	2.4.1 Node.js(v18.16.0) e Express(v4.17.3)
	2.4.2 Vue.js(3.2.25)

	3 Desenvolvimento
	3.1 Levantamento de Requisitos
	3.1.1 Identificação das Partes Interessadas e Metodologia
	3.1.2 Lista de Requisitos
	3.1.3 Requisitos Rejeitados
	3.1.4 Categorização dos Requisitos

	3.2 Modelagem
	3.2.1 Casos de uso
	3.2.1.1 Caso de Uso 1: Sistema de Atendimentos
	3.2.1.2 Caso de Uso 2: Auto-Atribuição de Conversas
	3.2.1.3 Caso de Uso 3: Garantia de Qualidade
	3.2.1.4 Caso de Uso 4: feedback Loop

	3.2.2 Diagramas de entidade-relacionamento

	3.3 Desenvolvimento
	3.3.1 Autenticação
	3.3.1.1 Login
	3.3.1.2 Register
	3.3.1.3 ForgotPassword
	3.3.1.4 Sistema de atendimentos
	3.3.1.5 Auto-Atribuição de Conversas
	3.3.1.6 Garantia de Qualidade
	3.3.1.7 Feedback Loop

	3.4 Testes

	4 Conclusão
	Referências

