

UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ

GUSTAVO MACIAS CORRÊA

SISTEMA GERADOR DE DOCUMENTOS PARA A

ENTIDADE SOCIAL CASA DO PIÁ

PONTA GROSSA

2022

4.0 Internacional

Esta licença permite remixe, adaptação e criação a partir do trabalho,
para fins não comerciais, desde que sejam atribuídos créditos ao(s)
autor(es) e que licenciem as novas criações sob termos idênticos.

Conteúdos elaborados por terceiros, citados e referenciados nesta obra
não são cobertos pela licença.

GUSTAVO MACIAS CORRÊA

SISTEMA GERADOR DE DOCUMENTOS PARA A

ENTIDADE SOCIAL CASA DO PIÁ

Document generator system for the social entity Casa do Piá

Trabalho de conclusão de curso de graduação
apresentado como requisito para obtenção do título
de Bacharel em Ciência da Computação, do
Departamento Acadêmico de Informática, da
Universidade Tecnológica Federal do Paraná
(UTFPR).

Orientador: Prof. Dr. Richard Duarte Ribeiro

Coorientador: Prof. MSc. Vinícius Camargo Andrade

PONTA GROSSA

2022

https://creativecommons.org/licenses/by-nc-sa/4.0/deed.pt_BR

GUSTAVO MACIAS CORRÊA

SISTEMA GERADOR DE DOCUMENTOS PARA A

ENTIDADE SOCIAL CASA DO PIÁ

Trabalho de Conclusão de curso apresentado como
requisito para obtenção do título de Bacharel em
Ciência da Computação da Universidade
Tecnológica Federal do Paraná (UTFPR).

Data de aprovação: 04/novembro/2022

Richard Duarte Ribeiro
Doutor

Universidade Tecnológica Federal do Paraná

Vinícius Camargo Andrade
Mestre

Universidade Tecnológica Federal do Paraná

Simone de Almeida
Doutora

Universidade Tecnológica Federal do Paraná

Geraldo Ranthum
Mestre

Universidade Tecnológica Federal do Paraná

PONTA GROSSA

2022

AGRADECIMENTOS

Gostaria de deixar registrado a minha gratidão a todos que me apoiaram

nessa fase da minha vida, todos foram importantes para que eu chegasse onde

cheguei.

Agradeço aos meus professores orientadores, o Prof. Dr. Richard e o Prof.

MSc. Vinícius por me guiarem durante esse processo de elaboração do TCC, e

sempre dispostos a me ajudar.

Agradeço aos meus pais, Sandro e Denise, minha madrinha, Nadmar, minha

avó e meu irmão pelo apoio demonstrado ao longo de todo o período de tempo em

que me dediquei a este trabalho.

À minha noiva, Leticia, por toda ajuda e apoio, e correções no texto do trabalho

quando eu precisei.

E aos funcionários de minha equipe na PagSeguro, por compartilharem seus

conhecimentos e todo aprendizado e experiência que obtive trabalhando na empresa.

E por fim, mas não menos importante, agradeço à instituição Casa Do Piá,

pela oportunidade de colaborar com eles fazendo este projeto.

RESUMO

Entidades sociais são importantes pois oferecem o serviço de assistência social para

os mais carentes, e essas instituições são monitoradas pelo Conselho Nacional de

Assistência Social, e pelo Conselho Municipal de Assistência Social (CMAS) do seu

município. Para a manutenção da inscrição da entidade social com o CMAS, é

necessário a entrega de documentos, controle de presenças e relatórios técnicos ou

psicológicos sobre os usuários atendidos. Esses documentos eram feitos

manualmente pela assistente social da instituição e então os dados eram repassados

ao documento no computador para serem impressos. Além de ser trabalhoso, há um

problema com a privacidade desses documentos, os quais contêm dados sensíveis.

O objetivo deste trabalho foi desenvolver uma aplicação Desktop para simplificar e

agilizar o processo de criação dos documentos e relatórios. O trabalho tem como foco

a geração de documentação para a Casa do Piá, uma entidade social do município

de Ponta Grossa – PR, junto com a documentação necessária para o desenvolvimento

e manutenção do software. O produto deste trabalho foi um software desenvolvido em

Java que realiza o controle das atividades relacionadas às crianças e jovens atendidas

pela instituição. Durante o desenvolvimento utilizou-se ferramentas e frameworks

populares no mercado de trabalho, como o Spring, Hibernate e Gradle, além da

interface gráfica em JavaFX. A intenção é que ele possa ajudar na administração dos

usuários da entidade, bem como na diminuição do tempo de trabalho dedicado à

confecção dos documentos que devem ser enviados ao CMAS.

Palavras-chave: Java; desenvolvimento; assistência social; software; Ponta Grossa;
JavaFX; Spring.

ABSTRACT

Social entities are important because they offer social assistance services to the

neediest, and these institutions are monitored by the National Council of Social

Assistance, and by the Municipal Council of Social Assistance (CMAS) of their

municipality. In order to maintain the registration of the social entity with the CMAS, it

is necessary to deliver documents, control attendance and technical or psychological

reports on the users served. These documents were made manually by the institution's

social worker and then the data were transferred to the document on the computer to

be printed. In addition to being cumbersome, there is a problem with the privacy of

these documents, which contain sensitive data. The objective of this work was to

develop a Desktop application to simplify and speed up the process of creating

documents and reports. The work focuses on the generation of documentation for

Casa do Piá, a social entity in the municipality of Ponta Grossa - PR, along with the

necessary documentation for the development and maintenance of the software. The

product of this work was a software developed in Java that performs the control of

activities related to children and young people served by the institution. During the

development, popular tools and frameworks in the job market were used, such as

Spring, Hibernate and Gradle, in addition to the graphical interface in JavaFx. The

intention is that it can help in the administration of the entity's users, as well as in the

reduction of the work time dedicated to the preparation of documents that must be sent

to CMAS.

Keywords: Java; development; social assistance; software; JavaFX; Spring.

LISTA DE FIGURAS

FIGURA 1 – FRAGMENTO DO QUADRO KANBAN UTILIZADO16

FIGURA 2 – MODELO ESPIRAL TÍPICO...18

FIGURA 3 - PROCESSO DE DESENVOLVIMENTO DE PROTÓTIPO21

FIGURA 4 – ELEMENTOS UML PARA DIAGRAMA DE CASO DE USO25

FIGURA 5 – EXEMPLO DE DIAGRAMA DE CLASSES ..27

FIGURA 6 – EXEMPLO DE DER ..28

FIGURA 7 – ESTRUTURA PARA UM REQUISITO NA FERRAMENTA
EASYBACKLOG ..30

FIGURA 8 – EXEMPLO DE CARD DO EASYBACKLOG30

FIGURA 9 – INTERFACE DO SPRING INITIALIZR ...32

FIGURA 10 – ESTRUTURA DO PROJETO PADRÃO DO SPRING INITIALIZR ..32

FIGURA 11 – REQUISITOS FUNCIONAIS LEVANTADOS PARA A PRIMEIRA
VERSÃO ...37

FIGURA 12 – CRITERIOS DE ACEITE ..38

FIGURA 13 – REQUISITOS NÃO FUNCIONAIS E CRITÉRIOS DE ACEITE DA
PRIMEIRA VERSÃO ...38

FIGURA 14 – DIAGRAMA DE CASO DE USO DO LOGIN39

FIGURA 15 – DIAGRAMA DE CASO DE USO DAS FUNCIONALIDADES40

FIGURA 16 – PROTÓTIPO DA TELA DE LOGIN ..41

FIGURA 17 – PROTÓTIPO DA TELA DE CADASTRO DE BENEFICIÁRIO42

FIGURA 18 – CONTINUAÇÃO PROTÓTIPO DA TELA DE CADASTRO DE
BENEFICIÁRIO ...43

FIGURA 19 – DIAGRAMA DE CLASSES DA V1 FOCADO NO BENEFICIÁRIO .44

FIGURA 20 – DIAGRAMA DE CLASSES DA V1 FOCADO NO FUNCIONÁRIO ..45

FIGURA 21 – DER DO SISTEMA PARA A PRIMEIRA VERSÃO46

FIGURA 22 – DEPENDÊNCIAS DO SISTEMA DA CASA DO PIÁ47

FIGURA 23 – EXEMPLO DO ARQUIVO APPLICATION.PROPERTIES48

FIGURA 24 – TELA DE LOGIN DO SISTEMA ...49

FIGURA 25 – TELA PRINCIPAL DA VERSÃO 1 ...49

FIGURA 26 – TELA DE CADASTRO DE DADOS E ENDEREÇO DO
BENEFICIÁRIO ...50

FIGURA 27 – TELA DE CADASTRO DE ASPECTOS FAMILIARES DO
BENEFICIÁRIO ...51

FIGURA 28 – TELA DE CADASTRO DE HABITAÇÃO E SAÚDE DO
BENEFICIÁRIO ...51

FIGURA 29 – TELA DE CADASTRO DE ASSISTÊNCIA SOCIAL E
ESCOLARIDADE DO BENEFICIÁRIO ...52

FIGURA 30 – CLASSE DE DOMÍNIO E CLASSE DE ENTIDADE53

FIGURA 31 – MÉTODO TOENTITY ...54

FIGURA 32 – EXEMPLO DE CÓDIGO DA CLASSE DE SERVIÇO54

FIGURA 33 – MÉTODO DA CLASSE DE CONTROLE ...55

FIGURA 34 – CLASSE DE SERVIÇO DE FUNCIONÁRIOS56

FIGURA 35 – CARDS DETALHADOS NA VERSÃO 2 ..58

FIGURA 36 – TELA DE CADASTRO DE DADOS PESSOAIS DO BENEFICIÁRIO
 59

FIGURA 37 – TELA DE CADASTRO DE ENDEREÇO DO BENEFICIÁRIO60

FIGURA 38 – TELA DE CADASTRO DE ASPECTOS FAMILIARES DO
BENEFICIÁRIO ...61

FIGURA 39 – TELA DE CADASTRO DE DADOS DE HABITAÇÃO DO
BENEFICIÁRIO ...61

FIGURA 40 – TELA DE CADASTRO DE DADOS DE SAÚDE DO BENEFICIÁRIO
 62

FIGURA 41 – TELA DE CADASTRO DE DADOS DE ESCOLARIDADE DO
BENEFICIÁRIO ...62

FIGURA 42 – TELA DE CADASTRO DE DADOS DE ASSISTÊNCIA SOCIAL DO
BENEFICIÁRIO ...63

FIGURA 43 – TELA DE DADOS DE INGRESSO DO BENEFICIÁRIO63

FIGURA 44 – TELA DE BUSCA DE BENEFICIÁRIOS ..64

FIGURA 45 – TELA DE VISUALIZAÇÃO DE DADOS PESSOAIS65

FIGURA 46 – MENU PRINCIPAL ATUALIZADO PARA A VERSÃO 266

FIGURA 47 – DIAGRAMA DE CLASSE DA VERSÃO 267

FIGURA 48 – DER ATUALIZADO DA VERSÃO 2 ...68

FIGURA 49 – PROPRIEDADES ADICIONADAS AO HIBERNATE68

FIGURA 50 – EXEMPLO DE POP-UP USADO ..69

FIGURA 51 – CÓDIGO PARA APRESENTAÇÃO DE MENSAGEM POP-UP69

FIGURA 52 – CAMPOS DESTACADOS COM DADOS INVÁLIDOS70

FIGURA 53 – APRESENTAÇÃO DE UM CAMPO INVÁLIDO70

FIGURA 54 – MÉTODO PARA FILTRAR OS NOMES DOS BENEFICIÁRIOS.....71

FIGURA 55 – MÉTODO PARA BUSCA DE DADOS DE BENEFICIÁRIOS71

FIGURA 56 – MÉTODOS DE SERVIÇO DO BENEFICIÁRIO................................71

FIGURA 57 – MÉTODO “FROMENTITY” ..72

FIGURA 58 – MÉTODO PARA ATUALIZAÇÃO DE DADOS DO BENEFICIÁRIO
 72

FIGURA 59 – MÉTODO QUE FAZ A CONSULTA NA API DE CEPS73

FIGURA 60 – MÉTODO DE GERAÇÃO DE DOCUMENTO DE INSCRIÇÃO74

FIGURA 61 – TELAS DE RECUPERAÇÃO DE SENHA75

FIGURA 62 – TELA DE RELATÓRIOS ..77

FIGURA 63 –TELA DE BUSCA DE BENEFICIÁRIOS ...77

FIGURA 64 – TELA DE DESLIGAMENTO DE BENEFICIÁRIOS78

FIGURA 65 – CLASSE “BENEFICIARIO” ATUALIZADA NA VERSÃO 379

FIGURA 66 – DER ATUALIZADO COM A ENTIDADE DESLIGAMENTO80

FIGURA 67 – MÉTODO PARA ENVIO DE E-MAIL DE RECUPERAÇÃO DE
SENHA ..81

FIGURA 68 – CHAMADA DO ENVIO DE E-MAIL ...81

FIGURA 69 – CLASSE DE ENTIDADE "DESLIGAMENTO"82

FIGURA 70 – MÉTODO DE DESLIGAMENTO DO BENEFICIÁRIO82

FIGURA 71 – QUERYS PARA DADOS DO RELATÓRIO83

FIGURA 72 – PROTÓTIPO TELA DE BUSCA DE BENEFICIÁRIOS INATIVOS ..85

FIGURA 73 – PROTÓTIPO DA TELA DE CADASTRO DE ATIVIDADES86

FIGURA 74 – PROTÓTIPO DA TELA DE EDIÇÃO DE ATIVIDADES86

FIGURA 75 – PROTÓTIPO DA TELA DE PRESENÇA DE BENEFICIÁRIOS87

FIGURA 76 – DIAGRAMA DE CLASSE DA VERSÃO 488

FIGURA 77 – DER ATUALIZADO DA VERSÃO 4 ...89

FIGURA 78 – MÉTODO DE BUSCA DE BENEFICIÁRIOS POR STATUS90

FIGURA 79 – CLASSE DE REPOSITÓRIO DE ATIVIDADES90

FIGURA 80 – MAPEAMENTO DE ENTIDADE ASSOCIATIVA COM HIBERNATE
 91

FIGURA 81 – BUSCA DE ATIVIDADES DO BENEFICIÁRIO EM UM MÊS91

LISTA DE ABREVIATURAS, SIGLAS E ACRÔNIMOS

ACID Atomicidade, Consistência, Isolamento e Durabilidade

API Application Programming Interface

CNAS Conselho Nacional de Assistência Social

CMAS Conselho Municipal de Assistência Social

CRAS Centro de Referência de Assistência Social

CRUD Create, Read, Update e Delete

DAO Data Access Object

DER Diagrama Entidade-Relacionamento

HTML HyperText Markup Language

JAR Java Archive

JIT Just In Time

JPA

JVM

Java Persistence API

Java Virtual Machine

SQL Structured Query Language

UML Unified Modeling Language

WiP Work in Progress

SUMÁRIO

1 INTRODUÇÃO ..12

1.1 Objetivos ..13

1.1.1 Objetivo geral ..14

1.1.2 Objetivos específicos ...14

1.2 Estrutura do trabalho ..14

2 REFERENCIAL TEÓRICO ...15

2.1 Quadro de Kanban ..15

2.2 Engenharia de Software ...16

2.2.1 Modelo de processo evolucionário ...17

2.2.2 Engenharia de requisitos ...19

2.2.3 Prototipação ..20

2.3 Modelos de Software ..22

2.3.1 Unified Modeling Language (UML) ..23

2.3.1.1 Diagrama de Caso de Uso ..24

2.3.1.2 Diagrama de Classe ..26

2.3.2 Diagrama Entidade-Relacionamento (DER) ..28

2.4 Ferramentas e Frameworks ..29

2.4.1 Ferramentas para o projeto do software ...29

2.4.2 Ferramentas para desenvolvimento do software31

2.4.3 Ferramentas para implantação do software ...34

3 DESENVOLVIMENTO ..35

3.1 Configuração, Login e Cadastro – Versão 1 ...35

3.1.1 Comunicação ...36

3.1.2 Projeto do Software ..43

3.1.3 Desenvolvimento da Versão 1 ...46

3.1.3.1 Subversão de configuração – Configurações do sistema46

3.1.3.2 Interfaces de usuário desenvolvidas ..49

3.1.3.3 Implementação do código-fonte ..52

3.1.4 Feedback da Casa do Piá ...56

3.2 Visualização de Beneficiários e Geração do Documento de Inscrição –
Versão 2 ...57

3.2.1 Comunicação com o cliente ...57

3.2.2 Projeto de software ...66

3.2.3 Desenvolvimento...68

3.2.4 Feedback da Casa do Piá ...74

3.3 Versão 3 – Relatórios e desligamento de beneficiários75

3.3.1 Comunicação com a Casa do Piá ..75

3.3.2 Projeto de Software ...78

3.3.3 Desenvolvimento...80

3.3.4 Feedback da Casa do Piá ...84

3.4 Versão 4 – Registro de atividades e presença de beneficiários84

3.4.1 Comunicação ...85

3.4.2 Projeto de Software ...87

3.4.3 Desenvolvimento...89

3.4.4 Feedback da Casa do Piá ...91

4 CONCLUSÃO ...93

4.1 Trabalhos futuros ..94

REFERÊNCIAS ...95

ANEXO A – MODELO DO DOCUMENTO DE CADASTRO DA CASA DO PIÁ97

12

1 INTRODUÇÃO

A assistência social é definida pelo Art. 1 da Lei nº. 8742, de 7 de dezembro

de 1993, como “direito do cidadão e dever do Estado”, e é “realizada através de um

conjunto integrado de ações de iniciativa pública e da sociedade, para garantir o

atendimento às necessidades básicas” (BRASIL, 1993). Ela é importante,

principalmente para a parcela mais necessitada da população, pois garante a eles os

seus direitos fundamentais.

A cidade de Ponta Grossa possui várias instituições sem fins lucrativos que

possuem como objetivo o proposto pela Lei nº. 8742, sendo uma delas a Casa do Piá.

A Casa do Piá oferece atividades no contraturno escolar para cerca de 165 crianças

e adolescentes de 6 a 17 anos, atuando no município de Ponta Grossa desde 1998.

As atividades oferecidas pela Casa do Piá às crianças e adolescentes atendidos são:

refeições, revisão de higiene, curso de informática, apoio escolar, esporte, dança,

coral e formação humana e religiosa (CENTRO, 2014).

As entidades sociais são monitoradas pelo Conselho Nacional de Assistência

Social (CNAS)1 e pelo Conselho Municipal de Assistência Social (CMAS)2 do

município. Para continuar em atividade, a Casa do Piá deve entregar anualmente a

documentação definida na Resolução CNAS n° 14 de maio de 2014 (BRASIL, 2014).

Além disso, anualmente é definida uma resolução no CMAS Ponta Grossa detalhando

a documentação a ser entregue pela Casa do Piá. A última resolução detalhando essa

documentação é a Resolução n° 2 de fevereiro de 2020 (PONTA GROSSA (PR)

2022), disponível no website do CMAS².

Para o funcionamento de uma entidade social, é necessário controle sobre os

dados das crianças atendidas, assim como verificação de presença, relatório de

atividades, plano de trabalho, e inscrição de novas crianças e/ou adolescentes, por

exemplo. Para isso são coletados dados da família, saúde, escolaridade, e origem do

inscrito, o qual pode ter sido encaminhado pelo Centro de Referência de Assistência

Social (CRAS), ou pode ter buscado o serviço pessoalmente.

1 Site do CNAS: http://www.mds.gov.br/cnas
2 Site do CMAS: https://cmas.pontagrossa.pr.gov.br

13

Atualmente na Casa do Piá, o controle de presença e a escrita de relatórios

técnicos ou psicológicos referentes aos jovens atendidos são feitos manualmente e

individualmente, sendo em seguida repassados para planilhas e documentos

eletrônicos, tornando o processo repetitivo e trabalhoso. Neste contexto, este trabalho

propõe o desenvolvimento de um software para gerenciar a movimentação e

permanência dos jovens na instituição por meio de registros dos dados pessoais de

cada um. A partir disso são gerados documentos para o cumprimento da legislação

vigente, desta maneira, otimizando o processo e centralizando os dados dos usuários

da Casa do Piá na aplicação, garantindo o controle de acesso e a segurança dos

dados.

Para o desenvolvimento deste trabalho, obteve-se os requisitos do software a

partir de uma entrevista aberta inicial seguida da apresentação de um protótipo.

Utilizou-se de outras entrevistas fechadas e/ou abertas para levantar novos requisitos,

refinar e validar as funcionalidades obtidas nas entrevistas anteriores. Com estes

requisitos corretos e completos, realizou-se a modelagem dos diagramas de Caso de

Uso e Classe, referentes à Unified Modeling Language (UML). Além destes

diagramas, modelou-se o Diagrama Entidade-Relacionamento (DER) para projetar o

banco de dados. Finalmente, com o sistema modelado, priorizou-se os requisitos

listados para dar início ao desenvolvimento do software.

O software desenvolvido é um sistema Desktop voltado para a segurança e

privacidade dos dados dos usuários atendidos pela Casa do Piá. A aplicação gera

documentos e mantém os relatórios técnicos ou psicológicos sobre os seus usuários.

Esses são necessários para que a instituição continue exercendo suas atividades.

Com o uso da aplicação, os processos de cadastro e desligamento de usuários foram

facilitados e acelerados. Adicionalmente, o controle das atividades e presença dos

usuários são registrados no software, atingindo, do ponto de vista dos funcionários da

Casa do Piá, os requisitos inicialmente solicitados.

1.1 Objetivos

O objetivo geral e os específicos serão descritos a seguir.

14

1.1.1 Objetivo geral

Desenvolver um software que auxilie o acompanhamento dos jovens e

adolescentes atendidos pela entidade social Casa do Piá, da cidade de Ponta Grossa,

bem como que gerenciar a documentação e produção de relatórios exigidos pela

legislação nacional e municipal.

1.1.2 Objetivos específicos

Para atingir o objetivo geral desta pesquisa, os seguintes objetivos específicos

foram definidos:

• Realizar o levantamento de requisitos funcionais e não funcionais do

projeto junto aos funcionários da Casa do Piá.

• Desenvolver um protótipo para a validação dos requisitos levantados.

• Modelar os diagramas necessários para a documentação e

desenvolvimento do projeto.

• Implementar o software.

• Validar o software desenvolvido a fim de obter um produto completo e

correto.

1.2 Estrutura do trabalho

Este trabalho está dividido em 4 capítulos. Sendo este, o Capítulo 1, a

introdução do trabalho. O Capítulo 2 aborda o referencial teórico necessário para o

entendimento do trabalho. O Capítulo 3 trata dos processos de desenvolvimento do

aplicativo. No Capítulo 4 são descritas as conclusões do trabalho e faz referências

aos trabalhos futuros.

15

2 REFERENCIAL TEÓRICO

O referencial teórico foi estruturado em cinco tópicos, de modo a demonstrar

a importância de cada etapa dentro do processo de desenvolvimento deste trabalho.

A Seção 2.1 aborda o uso do quadro de Kanban. A Seção 2.2 descreve a Engenharia

de Software e tópicos relacionados. A Seção 2.3 aborda tópicos de modelagem de

software. A Seção 2.4 apresenta ferramentas e frameworks usados na implementação

do trabalho.

2.1 Quadro de Kanban

Kanban é uma palavra japonesa que pode ser traduzida como signboard (em

inglês) ou “quadro de avisos" (em português), e se tornou sinônimo de programar por

demanda. O Kanban tem raízes no início do sistema Toyota de produção, e foi

desenvolvido para controlar a produção entre os processos, além de implementar a

manufatura Just In Time (JIT) nas fábricas da empresa nipônica (YASUHIRO, 2015).

No sistema Toyota de produção o sistema Kanban é sustentado pelos

seguintes itens (YASUHIRO, 2015):

• Sincronização da produção;

• Padronização das operações;

• Redução do tempo de preparação;

• Atividades de melhoria;

• Projeto de layout das máquinas; e

• Autonomação3.

O Kanban como é utilizado na Engenharia de Software foi concebido por

David Anderson e é estabelecido como “um método para definir, gerenciar e melhorar

serviços que entregam trabalho de conhecimento” (ANDERSON; CARMICHAEL,

2016, p.1), pois este método facilita visualizar a quantidade de trabalho, limitando a

carga que a equipe é capaz de realizar. O método consiste de quadros kanbans, que

3 É a junção das palavras autonomia e automação; No Toyotismo é um “Controle autônomo de defeitos”
(YASUHIRO, 2015).

16

podem ou não ter um limite mínimo e máximo de Work in Progress (WiP), sendo estes

limites WiP que regulam a carga de trabalho da equipe (ANDERSON; CARMICHAEL,

2016).

A Figura 1 apresenta como exemplo parte do quadro Kanban utilizado para

organizar as tarefas e reuniões para o desenvolvimento deste TCC, e possibilitando

que os interessados neste trabalho pudessem acompanhar o seu progresso.

Por intermédio deste quadro, é possível identificar o progresso das atividades.

As tarefas são movidas de um quadro a outro: do “A fazer” ao “Fazendo” quando

iniciadas, e do “Fazendo” ao “Feito” quando concluídas. No caso deste trabalho não

foi definido WiP em nenhum dos quadros Kanban pois o desenvolvimento foi feito por

apenas uma pessoa, tendo maior controle sobre as tarefas nos quadros.

Figura 1 – Fragmento do quadro Kanban utilizado

Fonte: Autoria própria (2022).

2.2 Engenharia de Software

No dicionário, a definição para software é: “Programa; reunião dos

procedimentos e/ou instruções que determinam o funcionamento de um computador”

(SOFTWARE, 2022). Software está presente em quase todos os dispositivos usados

nos dias de hoje e é a parte do dispositivo que não podemos tocar (PFLEEGER, 2010).

Segundo Pfleeger (2010), software é o que controla e regula os dispositivos

que usamos, simplificando ou até automatizando diversas tarefas do dia a dia. Para

que os dispositivos que usamos sejam funcionais, é necessário que o sistema esteja

correto. Para isso, boas práticas da engenharia de software garantem que o produto

do desenvolvimento faça uma contribuição positiva para nossas vidas.

17

Pressman (2011) menciona que o software não se desgasta, porém se

deteriora. Ou seja, com o passar dos anos, novas funcionalidades e alterações no

escopo do problema são necessárias. Com a atualização do software para suprir as

novas demandas, novos erros são inseridos, o que deteriora ainda mais o software,

minimizando assim sua vida útil.

Para tentar maximizar a vida útil de um sistema, a disciplina de engenharia de

software, busca analisar um problema genérico e aplicar boas práticas no

desenvolvimento do seu produto. Desta maneira, o engenheiro de software busca

soluções computacionais para o problema de seu cliente, utilizando diversos métodos

e recursos para encontrar a melhor solução (PFLEEGER, 2010).

O processo para a produção de um software pode ser dividido em quatro

atividades fundamentais: (i) especificação do software; (ii) desenvolvimento de

software; (iii) validação do software; e (iv) evolução de software (SOMMERVILLE,

2011).

Para o desenvolvimento deste trabalho utilizou-se o modelo de processo

evolucionário, passando diversas vezes por essas atividades. Para a especificação

de software, optou-se pela Engenharia de Requisitos e Prototipação. No design da

aplicação, utilizou-se os diagramas Unified Modeling Language (UML) como maneira

de documentar o software. A implementação contou com algumas ferramentas e

frameworks que serão melhores detalhados na Seção 2.4. Por fim, a validação e

evolução do software foi realizada por meio de feedback com o cliente.

2.2.1 Modelo de processo evolucionário

Segundo Pressman (2011, p. 62 – 66), o modelo de processo evolucionário

possibilita a entrega de um produto mais completo a cada versão do software. Na

literatura há diversos modelos de processos evolucionários, como por exemplo,

prototipação e modelo espiral.

O modelo espiral foi originalmente proposto por Barry Boehm, e “fornece

potencial para o rápido desenvolvimento de versões cada vez mais completas de

software.” (BOEHM, 1988). Além disso, é composto de um ciclo de atividades, com

cada uma representando um segmento.

18

A Figura 2 ilustra o modelo espiral. O modelo possui 5 segmentos:

comunicação, planejamento, modelagem, construção e entrega. Ao final de cada ciclo

é entregue um produto cada vez mais completo, podendo nas primeiras iterações ser

um modelo ou protótipo do software que evoluirá até que se torne o produto completo

(PRESSMAN, 2011).

Figura 2 – Modelo espiral típico

Fonte: Pressman (2011, p. 65).

Pressman menciona que o software evolui ao longo do tempo, enquanto o

cliente deseja ter suas necessidades supridas. Portanto, não é viável planejar a

entrega de um software completo de uma só vez, pois levaria muito tempo para ser

entregue. Assim, são lançadas diversas versões intermediárias suprindo aos poucos

cada uma das necessidades do cliente (PRESSMAN, 2011).

O uso do modelo de processo evolucionário evita também um dos problemas

encontrados na Engenharia de Requisitos, como por exemplo, o problema da

volatilidade, o qual é definido como a natureza de mudança dos requisitos, ou seja, as

necessidades do cliente mudam com o tempo, assim como os requisitos do sistema.

Neste caso, com a aplicação de um modelo evolucionário, é possível diminuir o efeito

da volatilidade nos requisitos, pois enquanto estiver em um ciclo evolucionário a última

versão do software estará sempre mais completa e atualizada (CHRISTEL; KANG,

1992).

As duas principais características que distinguem o modelo espiral dos demais

modelos são (BOEHM, 1988): (i) a sua abordagem cíclica (é um ciclo evolutivo em

cinco etapas: comunicação, planejamento, modelagem, construção e emprego do

software) que, ao passo que incrementa a definição e a implementação do sistema,

19

diminui o seu grau de risco; e (ii) pontos âncora de controle (pontos de reflexão sobre

o projeto, onde é verificado o andamento do projeto, o que pode ser melhorado, entre

outros) que garantem o engajamento dos interessados na busca de soluções

satisfatórias e praticáveis.

Conforme mencionado por Pressman (2011), o primeiro ciclo em volta da

espiral pode resultar em uma especificação de produto, para isso, pode-se utilizar

técnicas da engenharia de requisitos, abordadas na Seção 2.2.2. Os ciclos

subsequentes em volta da espiral podem ser utilizados para o refinamento destes

requisitos que podem ser realizados por meio da técnica de prototipação, descrita na

Seção 2.2.3.

2.2.2 Engenharia de requisitos

Um requisito é uma necessidade que o cliente deseja que seja suprida pelo

sistema, levando em conta a viabilidade de sua implementação, e especificando a

solução para essa necessidade sem duplicidade. Levantar requisitos nada mais é do

que descobrir as necessidades que um sistema deve fornecer para o usuário

(PRESSMAN, 2011). Esses requisitos podem ser divididos em funcionais e não

funcionais. Os funcionais são funcionalidades do sistema, ou seja, descrevem o que

este deve fazer. Enquanto os não funcionais definem algumas características ou

restrições para o software (SOMMERVILLE, 2011).

Segundo Pressman (2011), a engenharia de requisitos é a primeira etapa para

o desenvolvimento do software, e é por meio dela que é fornecido um entendimento

escrito do problema à todas as partes envolvidas no projeto, podendo ser alcançado

por uma série de artefatos como: casos de uso, listas de funções e características.

Porém, em muitos casos o cliente não saberá o que é necessário no sistema para

solucionar os seus problemas ou não terá um bom entendimento das características

e funções que o trarão benefícios, dificultando a tarefa de levantamento de requisitos

para o engenheiro de software.

Dentro da etapa de engenharia de requisitos há quatro atividades principais

(SOMMERVILLE, 2011):

20

• Estudo de viabilidade: é feita a verificação se as necessidades do cliente

podem ser supridas utilizando as tecnologias atuais de hardware e

software.

• Elicitação de requisitos: nesta atividade os requisitos são levantados. O

levantamento dos requisitos pode ser alcançado por meio de entrevistas

abertas ou fechadas. A entrevista aberta facilita compreender as

necessidades do cliente e explorar o sistema como um todo; e na entrevista

fechada o cliente responderá a um conjunto de perguntas predefinidas e

ajuda a explorar pontos específicos do sistema.

• Especificação de requisitos: os requisitos de usuário obtidos na atividade

anterior devem ser reunidos em um documento que os descreva. Estes

podem ser escritos em linguagem natural (linguagem desenvolvida

naturalmente pelo ser humano), ou de forma estruturada (como uma tabela,

ou um card com a estrutura predefinida), devendo ser escritos de forma que

o cliente possa os compreender.

• Validação de requisitos: na qual é verificado se os requisitos refletem o que

o cliente realmente quer. Requisitos incorretos implementados no sistema

podem tomar um grande tempo para serem corrigidos. Os erros devem ser

encontrados antes da implementação, sendo possível encontrá-los por

meio de revisões dos requisitos, prototipação ou o uso de casos de teste.

2.2.3 Prototipação

Segundo Pfleeger (2010), por vezes o cliente não sabe exatamente o que

necessita em um sistema e essas incertezas fazem com que o time de analistas e

desenvolvedores enfrentem problemas ao implementar o projeto. Neste contexto, o

desenvolvimento de um protótipo auxilia na validação dos requisitos funcionais junto

as partes interessadas, possibilitando que os mesmos apontem problemas e

melhorias ao produto que será construído.

Segundo Sommerville (2011), o protótipo ajuda a verificar possíveis

mudanças que possam interferir em dois processos: (i) no processo de engenharia de

requisitos pode auxiliar na análise e validação de requisitos; e (ii) no processo de

21

design do sistema pode ser utilizado para analisar soluções específicas do software e

para apoiar o projeto de interface de usuário.

Mesmo com os requisitos bem definidos e especificados, quando

determinadas funções dos sistemas são combinadas com outras, os usuários

percebem que sua visão inicial do sistema está errada e que mudanças devem ser

realizadas. Isso só é possível por meio de uma avaliação de um protótipo, caso

contrário, o erro só será encontrado na versão final do sistema, custando altos valores

para ser reparado (SOMMERVILLE, 2011).

Além da utilização da prototipação para validar os requisitos elicitados e

verificar a viabilidade do projeto, a prototipação é comumente utilizada como parte

essencial de projeto da interface de usuário. Pois, somente a modelagem e descrições

textuais não são o suficiente para expressar os requisitos de usabilidade

(SOMMERVILLE, 2011).

Sommerville (2011) descreve o processo de desenvolvimento de protótipo

(Figura 3) o qual envolve 4 etapas: (i) estabelecer objetivos do protótipo; (ii) definir

funcionalidade do protótipo; (iii) desenvolver protótipo; e (iv) avaliar o protótipo.

Figura 3 - Processo de Desenvolvimento de Protótipo

Fonte: Sommerville (2011, p. 30).

Na etapa de objetivos do protótipo são explicitadas as intenções de realizar a

prototipação desde o início do processo, como por exemplo, validação de requisitos

funcionais, interface de usuário, demonstrar aos gerentes a viabilidade do projeto,

entre outros. Caso estes objetivos são sejam definidos, a gerência e/ou os usuários

finais podem não compreender a função do protótipo, consequentemente, não obterão

os benefícios da realização da prototipação.

A próxima etapa é responsável pela definição de quais funcionalidades o

protótipo terá. Esta etapa visa reduzir custos e acelerar o cronograma de entrega.

Para isso, algumas funcionalidades podem ser deixadas de fora do sistema

prototipado, dando ênfase nos objetivos definidos na etapa anterior.

22

Por fim, as etapas de desenvolver e avaliar o protótipo. Nestas etapas ocorrem

a implementação e avaliação do protótipo junto aos gerentes e/ou clientes do projeto,

os quais poderão solicitar modificações a fim de sanar problemas encontrados, sejam

de interface de usuário, funcionalidades, cronograma do projeto ou recursos da

própria organização.

A implementação de um protótipo exige do time de desenvolvimento a escolha

do tipo de protótipo que será construído. Dentre os tipos de protótipos existentes, dois

se destacam (PFLEEGER, 2010): descartável e evolutivo. Ambos têm o propósito de

validar os requisitos levantados e são desenvolvidos rapidamente, porém o

descartável não tem como propósito ser integrado ao sistema final, permitindo que se

deixe de lado algumas características como o seu desempenho. Em contrapartida, o

evolutivo pode ser integrado ao sistema final, sendo necessário maior cuidado para

seu desenvolvimento.

2.3 Modelos de Software

Um modelo é uma simplificação da realidade. Para o desenvolvimento de

software, modelos são construídos para compreender melhor um determinado

problema. Ao dividir um problema complexo, é possível encontrar uma solução para

cada aspecto deste e resolvê-lo como um todo. Consequentemente, a escolha dos

modelos corretos a serem usados são importantes pois estes esclarecerão o

problema, enquanto os modelos incorretos podem gerar incertezas no projeto

(BOOCH, 2006).

Para o presente trabalho utilizou-se o paradigma orientado a objetos por

prover sistemas manuteníveis e flexíveis à novas funcionalidades. Para modelá-lo,

utilizou-se a Unified Modeling Language (UML), apresentada na Subseção 2.3.1, uma

linguagem de modelagem amplamente utilizada para apoiar a escrita de

documentação de software e auxiliar no desenvolvimento do mesmo, minimizando as

chances de se cometer erros de especificação de requisitos. Para representar

graficamente a estrutura lógica do banco de dados, fez-se uso do Diagrama Entidade-

Relacionamento, abordado na Subseção 2.3.2.

23

2.3.1 Unified Modeling Language (UML)

A Unified Modeling Language (UML) é uma linguagem que fornece um

vocabulário de elementos para a representação dos modelos de um sistema e indicam

como criar e ler modelos bem estruturados. Esses modelos podem representar

diversas visões do software a ser desenvolvido, e cabe ao desenvolvedor escolher os

melhores modelos e visões para projetar o software.

O vocabulário da UML contém três tipos de blocos de construção (BOOCH,

2006):

i. itens: são os tipos de elementos básicos da UML;

ii. relacionamentos: são elementos que reúnem os itens; e

iii. diagramas: são visões do sistema sobre diferentes perspectivas, são

formados por itens e relacionamentos.

Os itens podem ser classificados também em quatro tipos (BOOCH, 2006):

estruturais, comportamentais, de agrupamento e anotacionais. Os itens estruturais

são a parte mais estática do modelo e representam elementos conceituais ou físicos.

Dentre os itens estruturais estão as classes, representadas por retângulos

divididos em três partes: nome, atributos e operações; interfaces, representadas por

um círculo quando é fornecida ao mundo externo, e indica uma especificação de

operações, mas não suas implementações; e casos de uso, representados por elipse,

com seu nome geralmente dentro deste elemento, representando uma funcionalidade

do sistema (BOOCH, 2006).

Nos itens comportamentais estão três elementos: interações, máquinas de

estados, e atividades. Os três são comportamentos do sistema, o primeiro abrangendo

as mensagens trocadas entre os objetos num contexto, o segundo demonstrando a

sequência de estados que o objeto percorre como resposta a determinados eventos,

e o terceiro indica os passos que um processo realiza (BOOCH, 2006).

Os itens de agrupamento são itens que ajudam a organizar o projeto, existindo

apenas um tipo principal de item de agrupamento chamado de pacote. Esses itens

podem agrupar itens estruturais, comportamentais e até mesmo de agrupamento para

que o projeto seja organizado. Por fim, os itens anotacionais são explicações ou

comentários no modelo que podem descrever ou esclarecer qualquer elemento do

modelo (BOOCH, 2006).

24

Para o presente trabalho, optou-se por utilizar os Diagramas de Casos de Uso

e o Diagrama de Classe. O primeiro para compreender o escopo do projeto, quais as

principais funcionalidades compõem o sistema e como os usuários irão interagir com

cada funcionalidade. O segundo para definir o modelo a ser seguido durante a

implementação do sistema.

As subseções 2.3.1.1 e 2.3.1.2 detalham ambos os digramas utilizados no

desenvolvimento deste trabalho.

2.3.1.1 Diagrama de Caso de Uso

Ao projetar um software, a sua estrutura deve estar adequada às formas que

este será usado e, para isso, são projetados os diagramas de Caso de Uso pois estes

permitem fazer uma análise do uso do sistema e planejar a estrutura mais adequada

para o software a ser desenvolvido (BOOCH, 2006).

Um diagrama de Caso de Uso bem estruturado deve somente explicar o

essencial de um sistema ou subsistema. É demonstrado por meio deste diagrama a

interação de elementos externos sobre o sistema que está sendo projetado, tendo

cada Caso de Uso representando um requisito funcional (BOOCH, 2006).

A Figura 4 ilustra um exemplo de um diagrama de caso de uso para um

sistema de controle bancário. Pode-se citar os seguintes elementos (GUEDES, 2011):

• Ator: representa um elemento externo que interage com o sistema,

podendo ser um usuário do sistema ou um sistema externo. No exemplo

há dois atores: Cliente e Funcionário;

• Casos de uso: representa uma sequência de ações do sistema que geram

um resultado observável para o ator. No exemplo há ao todo onze casos

de uso: Abrir Conta Comum, Abrir Conta Especial, Abrir Conta Poupança,

Manter Cliente, Emitir Extrato, Realizar Depósito, Encerrar Conta, Realizar

Saque, Manter Cliente, Registrar Movimento e Emitir Extrato.

• Associações: representam as interações ou relacionamentos entre os

atores e os casos de uso, ou entre casos de uso e outros casos de uso. As

associações podem ser de três tipos:

o Inclusão: indica a obrigatoriedade de um caso de uso executar um outro

caso de uso. A associação de inclusão é identificada pelo estereótipo

25

<<include>> associada a ela. No exemplo, o caso de uso “Realizar

Saque” obrigatoriamente irá executar o caso de uso “Registrar

Movimento”;

o Extensão: representam eventos opcionais, ou seja, um determinado

caso de uso pode ou não executar um outro caso de uso, dependendo

de algumas condições. A associação de inclusão é identificada pelo

estereótipo <<extend>> associada a ela. No exemplo, o caso de uso

“Encerrar Conta” pode ou não executar o caso de uso “Realizar Saque”;

o Generalização: associação entre dois casos de uso ou dois atores que

possuem características similares, sendo que os casos de uso / atores

especializados herdam características e associações de inclusão ou

extensão que o caso de uso / ator geral possui. No exemplo, o caso de

uso “Abrir Conta Especial” e “Abrir Conta Poupança” especializam o

caso de uso “Abrir Conta Comum”.

Figura 4 – Elementos UML para Diagrama de Caso de Uso

Fonte: Adapatado de GUEDES (2011, p. 31).

Para fazer a modelagem de um Diagrama de Caso de Uso é necessário

primeiramente identificar os atores que interagem com o elemento a ser modelado e

organizá-los com generalizações ou especializações dos atores. Em seguida, deve-

se verificar as principais formas que estes atores interagem, indireta ou diretamente

com o sistema, e suas alterações de estado. E então, finalmente dispor as

26

funcionalidades como casos de usos, indicando seus relacionamentos com outros

casos de uso e/ou atores (BOOCH, 2006).

2.3.1.2 Diagrama de Classe

Os Diagramas de Classes modelam uma visão estática do projeto do sistema

e são importantes para a construção de sistemas executáveis. Este diagrama contém

classes, interfaces, colaborações e seus relacionamentos; podendo contribuir para a

modelagem de outros diagramas, como o esquema lógico de um banco de dados

(BOOCH, 2006).

Cada classe é identificada pelo seu nome, atributos e métodos. Os atributos

são responsáveis por armazenar os estados dos objetos, por outro lado, os métodos

definem as ações que uma instância pode executar (GUEDES, 2011).

Para que o sistema funcione adequadamente, as classes possuem

associações entre si, para que efetuem a comunicação e troca de informações entre

os objetos. Os tipos de associações são (GUEDES, 2011):

• Unária/Reflexiva: ocorre quando há um relacionamento de um objeto com

outros objetos da mesma classe;

• Binária: ocorre quando há um relacionamento entre objetos de classes

diferentes;

• Agregação: ocorre quando há um relacionamento entre dois objetos de

classes distintas, porém, este relacionamento demonstra que as

informações de um objeto precisam ser complementadas pelas

informações contidas no outro objeto. Ou seja, evidencia a relação

todo/parte entre os objetos associados.

• Composição: ocorre quando há relacionamento entre dois objetos de

classes distintas, porém, na composição, o vínculo é considerado forte

entre os objetos-todo e objetos parte, em que ambos não podem coexistir

separadamente;

• Generalização/Especialização: representa a ocorrência de herança entre

duas ou mais classes. A classe especialista, também conhecida como

subclasse ou classe filha, herda as características e comportamentos da

classe genérica, também conhecida como superclasse ou classe mãe.

27

Além das associações, há também questões como navegabilidade e

multiplicidade. A primeira diz respeito ao sentido que as informações estão sendo

transmitidas entre os objetos e é identificada por uma seta em uma das extremidades

da associação. A segunda, especifica quantas instâncias de uma classe podem estar

associadas a cada objeto de outra classe, e é identificado por um valor numérico

relacionado a associação em questão (GUEDES, 2011).

A Figura 5 ilustra um Diagrama de Classes para um sistema de controle

bancário.

Figura 5 – Exemplo de Diagrama de Classes

Fonte: Adaptado de GUEDES (2011, p. 32).

No exemplo apresentado na Figura 5, há uma relação de

generalização/especialização entre as classes “Pessoa_Fisica” e “Pessoa_Juridica”

para a classe “Pessoa”. Neste caso, as características e comportamentos da classe

“Pessoa” são herdadas para as demais classes citadas. A associação de

generalização/especialização também ocorre entre as classes “Conta_Comum”,

“Conta_Especial” e “Conta_Poupanca”, sendo que as duas últimas herdam as

informações de “Conta_Comum”.

A classe “Pessoa” possui uma associação de agregação com

“Conta_Comum” e uma multiplicidade de 1 ou N, ou seja, uma pessoa pode possuir

uma ou várias contas neste sistema bancário. Por fim, a classe “Conta_Comum”

possui uma associação binária de multiplicidade 1 ou N com a classe “Movimento”.

28

Neste caso, cada conta registra um ou vários movimentos que ocorrem na conta,

como por exemplo, saques, depósitos, entre outros.

2.3.2 Diagrama Entidade-Relacionamento (DER)

A abordagem Entidade-Relacionamento foi criada para facilitar o projeto de

banco de dados. O conceito fundamental nesta abordagem é o conceito de Entidade,

que representa um objeto do mundo real que pode ser distinguido de outros objetos.

Cada Entidade pode conter um conjunto de atributos que o definem, e um ou mais

desses atributos que serão únicos, sendo chamado de “atributo identificador”. Além

do conceito de entidades, outro conceito que define essa abordagem são os

relacionamentos, sendo estes relacionamentos as associações entre as entidades

(SILBERSCHATZ, 2020).

No Diagrama Entidade-Relacionamento (DER) as entidades são

representadas por um retângulo com o nome da entidade representada, e os

relacionamentos entre essas entidades são apresentadas com um losango ligado por

linhas às entidades que têm um relacionamento. É possível identificar nos

relacionamentos a sua cardinalidade, que expressa o número de entidades ao qual

uma entidade pode se associar por um conjunto de relacionamentos

(SILBERSCHATZ, 2020).

A Figura 6 ilustra duas entidades: “instrutor” e “aluno”, o “instrutor” tem como

atributos “nome” e “salário”, e atributo identificador “ID”; o “aluno” tem os atributos

“nome” e “tot_cred” e atributo identificador “ID”. O losango representa a relação entre

as entidades que estão ligadas. Esse relacionamento indica que o “instrutor” tem a

associação de “mentor” de “aluno”.

Figura 6 – Exemplo de DER

Fonte: SILBERSCHATZ (2020, p. 135).

29

2.4 Ferramentas e Frameworks

Para o desenvolvimento de um software, o desenvolvedor deve priorizar a

reutilização, facilidade de manutenção e extensão. Para isso, faz-se necessário a

utilização de padrões de projeto, pois os mesmos diminuem e limitam dependências

de plataformas e de outras camadas do sistema (GAMMA et al., 2011).

Atualmente há diversos frameworks que auxiliam o desenvolvedor a aplicar

as boas práticas de desenvolvimento, bem como o uso de padrões de projetos,

facilitando a construção de uma aplicação de forma rápida e consistente (GAMMA et

al., 2011). Para o desenvolvimento deste trabalho, utilizou-se algumas ferramentas e

frameworks que auxiliaram em todas as etapas do projeto. As ferramentas e

frameworks foram separadas em três categorias de acordo com qual etapa foi usada:

(i) projeto de software; (ii) desenvolvimento do software; (iii) e implantação do software

2.4.1 Ferramentas para o projeto do software

Com o intuito de padronizar a escrita dos requisitos levantados na etapa de

Engenharia de Requisitos de forma estruturada, utilizou a plataforma EasyBacklog4 a

qual permite ser configurada para gerenciar as demandas e requisitos para o

desenvolvimento de software.

A Figura 7 apresenta a estrutura que é usada para a escrita de uma demanda

na ferramenta. O card é identificado por um código, que tem relação com o tema do

cartão, identificado na figura como “LOG”; o campo “Como” deve conter quem é o

ator/atores que deverão ter acesso a essa funcionalidade; em “Eu quero” é escrito a

funcionalidade que este requisito representa; e “Para que” é a motivação da

implementação deste requisito.

4 Website da ferramenta EasyBacklog: https://easybacklog.com/

30

Figura 7 – Estrutura para um requisito na ferramenta EasyBacklog

Fonte: EasyBacklog (2022).

Além da estrutura apresentada, é possível adicionar critérios de aceite e

comentários sobre o cartão escrito. Ao final, a ferramenta permite gerar um PDF com

todos os requisitos escritos, dispostos em cards semelhantes ao mostrado na Figura

8.

Figura 8 – Exemplo de card do EasyBacklog

Fonte: Autoria própria (2022).

Este exemplo apresenta um requisito do sistema, onde quem tem a permissão

de executar essa funcionalidade é a assistente social. Esta deve conseguir gerar um

documento que representa o cadastro de um usuário na Casa do Piá, com o propósito

de enviar essa documentação para o CMAS. Os critérios de aceitação são pontos que

devem ser verificados para que a implementação desse requisito possa ser

considerada correta, no caso, o preenchimento com os dados corretos do beneficiário

que foi gerada a documentação de cadastro.

Para a escrita da documentação do sistema, uma vez que o mesmo será

entregue a instituição filantrópica e futuramente ocorrerão atualizações no sistema,

utilizou-se a ferramenta StarUml5, a qual permite modelar diagramas utilizando os

padrões especificados na UML, além de ser possível utilizar, na própria ferramenta,

os componentes gráficos, que são dispostos de acordo com o diagrama modelado

(MKLABS, 2021).

5 Website da ferramenta StarUml: https://staruml.io

31

2.4.2 Ferramentas para desenvolvimento do software

Na etapa de implementação do sistema, utilizou-se o framework Spring6 o qual

visa diminuir o tempo gasto com a configuração do ambiente, possibilitando ao

programador focar na regra de negócio e implementação. O Spring também

implementa no projeto a injeção de dependências, fazendo com que a aplicação possa

ter baixo acoplamento de uma classe, ou seja, menor dependência de uma classe

para o programa funcionar (JUNIOR; AFONSO, 2017).

 Além disso, pode se ressaltar que o Spring Boot, um dos projetos do Spring

“analisa o projeto e automaticamente o configura” (JUNIOR; AFONSO, 2017. p. 19).

O uso do Maven7 ou do Gradle8 possibilita a inserção de uma dependência no projeto

e então, o Spring Boot irá configurar essas dependências automaticamente. Com o

uso do Spring, as classes principais, chamadas de “beans”, são carregadas pelo

gerenciamento de inversão de controle do projeto. Estas são instanciadas, acopladas

e gerenciadas pelo Spring, tendo elas e suas dependências refletidas na configuração

e inicialização do projeto (VMWARE, 2022).

Utilizou-se o website spring initializr9, uma API que facilita a configuração do

Spring Boot em projetos baseados na JVM. Este website contém uma interface

amigável ao usuário, no qual é possível escolher o tipo de projeto entre Maven e

Gradle, escolher a linguagem usada, a versão do Spring Boot que será usada no

projeto, adicionar algumas dependências do programa, além de definir alguns

metadados que definirão a estrutura do projeto. A interface do spring initializr é

apresentada na Figura 9 com os metadados preenchidos com o exemplo dado pela

ferramenta.

6 Site Spring: https://spring.io/
7 Site Apache Maven: https://maven.apache.org/
8 Site Gradle: https://gradle.org/
9 Site Spring Initializr: https://start.spring.io/

32

Figura 9 – Interface do spring initializr

Fonte: VMware (2022)

Observa-se na Figura 9 que a opção do tipo de projeto está configurada como

Gradle, a linguagem em Java, a versão do Spring Boot na 2.6.7, e algumas

dependências como o Lombok, o driver do PostgreSQL e o Spring Data JPA, os

metadados estão preenchidos com os valores padrões da ferramenta, o tipo de

empacotamento encontra-se em Jar e a versão 11 do Java. Com estas configurações

concluídas é possível gerar ou explorar a estrutura, podendo também compartilhar as

configurações deste projeto.

Figura 10 – Estrutura do projeto padrão do spring initializr

Fonte: VMware (2022)

Ao lado esquerdo da Figura 10 é exibida a estrutura do projeto. O padrão

seguido pela ferramenta é que as pastas que contém códigos devem ficar dentro do

33

caminho de pastas “src.main.java”, seguido de algumas informações preenchidas nos

campos de metadados observado na Figura 9. Assim, o restante do caminho de

pastas para o código deve ser preenchido com o valor de “Package name”, que será

a concatenação do caminho de “Group” com do “Artifact”. Além das pastas que contém

códigos, há também: (i) a pasta “src.resources” que deve conter recursos utilizados

no projeto, como imagens ou até mesmo arquivos de configurações do programa,

como o “application.properties”; e (ii) a pasta “test” que pode conter testes para o

sistema ou classes do projeto.

Ao lado direito da Figura 10 encontra-se aberto o arquivo “build.gradle”

gerado. Este é um arquivo que irá conter informações para compilação e execução do

sistema, além de ser onde as dependências são especificadas para que o Gradle

possa baixa-las e aplicar ao projeto.

Para a persistência de dados, fez-se uso do framework Hibernate10, que é

uma implementação do Java Persistence API (JPA). Este fornece um mapeamento

objeto-relacional para classes Java. Os atributos das classes mapeadas pelo

Hibernate podem ser mapeados para colunas no banco de dados assim como os

relacionamentos entre as classes podem ser mapeadas para os relacionamentos

entre as tabelas (SILBERSCHATZ, 2020).

Juntamente com a utilização do Hibernate, foi necessário a escolha de um

banco de dados em nuvem. De acordo com a Oracle (2022), este serviço oferece

maior agilidade e inovação além de custos e riscos reduzidos, pois podem ser

configurados de maneira rápida e fácil. Não há a necessidade de pedir hardware para

a hospedagem do banco de dados, estes podem ser configurados e disponibilizados

em alguns minutos e a empresa que provém o serviço pode aplicar e atualizar medidas

de segurança com menor indisponibilidade para o cliente. Esta tecnologia foi utilizada

também para que o cliente possa acessar o software em qualquer desktop sem a

configuração de um banco de dados local, além de disponibilizar todos os registros do

banco de dados para todos usuários do software em tempo real.

A primeira opção encontrada foi o “Amazon DynamoDB11”, um banco de

dados não relacional, NoSQL disponibilizado pela Amazon, com 25 GB de

armazenamento gratuito. Apesar de essa ser uma opção atrativa, optou-se pela busca

10 Site Hibernate: https://hibernate.org/
11 Website Amazon DynamoDB: https://aws.amazon.com/pt/dynamodb

34

de um banco de dados relacional, com o intuito de se beneficiar das propriedades

ACID (Atomicidade, Consistência, Isolamento e Durabilidade) na transação desta

forma de modelagem dos dados. Encontrou-se então o Heroku.

Utilizou-se também na implementação da aplicação o framework Lombok,

pois este fornece um conjunto de anotações que elimina uma quantidade considerável

de código repetido das classes Java, tornando-as mais limpas, simples e fáceis de

manter. O Lombok ajuda também a aplicar padrões de projeto no código, como o

Builder, com a anotação @Builder. É possível até mesmo lidar com métodos

multithread, utilizando a anotação @Synchronized acima do método que teria a

palavra reservada synchronized no método (LOMBOK, 2021).

É algo comum em um projeto Java conter muitas linhas de código definindo

dados simples em uma classe, assim como métodos de acesso a esses atributos. As

anotações disponíveis no Lombok são utilizadas para gerar o código de métodos de

comportamento padrão, como "getters" e "setters" (LOMBOK, 2021).

2.4.3 Ferramentas para implantação do software

Com o intuito de facilitar o processo de instalação da aplicação no ambiente

real de utilização, há a necessidade de criar um instalador para o software. Neste

contexto, utilizou-se Inno Setup12, que é uma ferramenta gratuita, o qual auxilia na

criação de instaladores de programas para o Sistema Operacional Windows. A

configuração dos instaladores é realizada por meio de um script que será salvo com

a extensão “.iss” (inno setup script), no qual é possível controlar todos os aspectos da

instalação: definir quais arquivos devem ser instalados, atalhos a serem criados,

ícones para os atalhos, entre outros. (RUSSEL, 2021).

12 Website da ferramenta Inno Setup: https://jrsoftware.org/isinfo.php

35

3 DESENVOLVIMENTO

Este capítulo aborda as etapas de desenvolvimento da aplicação. Os modelos

e diagramas evoluíram ao longo das versões de acordo com os requisitos que seriam

implementados, assim como o software. Cada versão é um novo ciclo do modelo

espiral de desenvolvimento de software, sendo cada subseção uma etapa da espiral.

As subseções passam pelas etapas de: (i) Comunicação, onde há reuniões com o

cliente, elicitação e detalhamento de requisitos, incluindo também a etapa de

planejamento, onde são definidas as funcionalidades que o restante do ciclo

implementará. (ii) Projeto de software, nesta etapa há a modelagem dos diagramas

necessários para a implementação do sistema. (iii) Desenvolvimento, quando o

software é implementado de fato e ao fim desta etapa é entregue ao cliente. (iv)

Feedback e conclusões, nesta etapa o cliente teve contato com a nova versão e tempo

para testá-la e apontar melhorias para a próxima versão, além de nesse momento já

conter algumas melhorias na forma de desenvolvimento percebidas durante o

desenvolvimento.

3.1 Configuração, Login e Cadastro – Versão 1

A primeira etapa para o desenvolvimento deste trabalho foi entrar em contato

com os funcionários da Casa do Piá e realizar as atividades descritas na Engenharia

de Requisitos. Com os requisitos levantados e especificados, desenvolveu-se um

protótipo para a validação dos requisitos que, posteriormente, foi útil para iniciar o

projeto do software e finalmente o desenvolvimento de sua primeira versão. A

Subseção 3.1.1 aborda a comunicação com os funcionários da instituição. A

Subseção 3.1.2 apresenta o projeto de software da primeira versão do sistema. A

Subseção 3.1.3 descreve as configurações necessárias a fim de executar a aplicação.

Por fim, a Subseção 3.1.4 discorre sobre a entrega da primeira versão, bem como o

feedback obtido do usuário.

36

3.1.1 Comunicação

O início da etapa de comunicação se deu com o levantamento do escopo do

sistema desenvolvido. Para isso, a primeira reunião ocorreu em forma de uma

entrevista aberta, na qual elicitou-se as funcionalidades que o cliente deseja no

software, e quem tem acesso à estas.

Realizou-se a primeira reunião com os funcionários da Casa do Piá indicados

como os principais utilizadores das funcionalidades do sistema. As necessidades

levantadas pela assistente social e pelo orientador da instituição são: um sistema que

controle o acesso aos dados utilizados nas atividades da instituição; realize a

inscrição, disponibilize e produza a documentação com os dados dos beneficiários da

Casa do Piá inscritos; elabore relatórios a partir dos cadastros realizados; registre o

desligamento de inscritos; e controle as atividades realizadas e registre a presença

dos beneficiários.

Destas necessidades, definiu-se para todos os funcionários a autenticação,

ou login, provendo a camada de proteção aos dados contidos no software, e a

visualização dos dados a eles permitidos. Para a assistente social as funcionalidades

disponíveis são: o cadastro de beneficiários, gerar os documentos como resultado da

inscrição e relatórios sobre os atendidos. Enquanto o orientador deve registrar no

software a realização de atividades assim como a presença dos beneficiários

participantes, além do acesso aos relatórios sobre os inscritos.

37

Figura 11 – Requisitos funcionais levantados para a primeira versão

Fonte: Autoria própria (2022).

As necessidades do cliente foram escritas como requisitos do sistema na

ferramenta easyBacklog, definindo o seu escopo. Ao longo do desenvolvimento das

versões, mais detalhes dos requisitos foram coletados e escritos, complementando-

os com critérios de aceite, comentários e diagramas que melhor os definem. A Figura

11 apresenta os requisitos funcionais listados em cards gerados pela ferramenta

usada. Para os requisitos funcionais utilizou-se o código RQF juntamente com o

número de identificação para este requisito.

38

Figura 12 – Criterios de aceite

Fonte: Autoria própria (2022)

Em complemento aos requisitos funcionais levantados, critérios de aceite são

apresentados na Figura 12. Estes ajudaram a detalhar características das

funcionalidades que devem ser implementadas para que sejam consideradas corretas

e a documentar os requisitos de forma mais completa. Escreveu-se os critérios de

aceite apenas para aqueles detalhados na última comunicação com o cliente,

registrando de forma resumida aquilo que foi descrito.

Além dos requisitos funcionais, foi possível extrair das necessidades do

cliente alguns requisitos não funcionais, exibidos na Figura 13. Para estes cards,

utilizou-se o código RNF juntamente com o número de identificação do requisito. Os

requisitos não funcionais escritos puderam ser levantados a partir do escopo do

sistema. Estes requisitos foram escritos para garantir a proteção dos dados utilizando

a criptografia dos mesmos durante a armazenagem, além de se certificar que a

documentação gerada pela aplicação será útil para a Casa do Piá.

Figura 13 – Requisitos não funcionais e critérios de aceite da primeira versão

Fonte: Autoria própria (2022).

39

Após a definição do escopo de requisitos do sistema, as necessidades foram

ordenadas em função do maior benefício para o cliente, resultando na seguinte ordem

de prioridade: (i) login, gerando a camada de proteção e privacidade desejada pelo

cliente; (ii) inscrição de beneficiários, pois as principais finalidades do sistema são

voltadas para estes; (iii) visualização das informações de beneficiários, para que os

dados daqueles inscritos sejam utilizados durante os atendimentos e atividades

realizadas; (iv) geração de documento de inscrição, devido a necessidade deste

documento após o cadastro; (v) desligamento de beneficiários, concluindo as ações

de manipulação dos inscritos; (vi) registro de realização de atividades; (vii) presença

de usuários; e (viii) a geração de relatórios sobre os beneficiários.

Figura 14 – Diagrama de Caso de Uso do Login

Fonte: Autoria própria (2022).

Modelou-se o Diagrama de Caso de Uso para documentar os fluxos possíveis

para cada usuário do sistema. Primeiramente, o funcionário tem uma interação com a

tela de login, onde ele pode somente autenticar-se. Este caso de uso, apresentado na

Figura 14 foi desenhado separadamente pois somente há interação com outras

funcionalidades do sistema após o sucesso nesse fluxo, sendo pré-requisito para os

fluxos apresentados posteriormente.

Em seguida, modelou-se na Figura 15 os demais requisitos disponíveis após

o login do Funcionário. O diagrama contém como principal ator o Funcionário, que

interage com os casos de uso diretamente ou através de suas especializações:

“Assistente Social”, e “Coordenador”. O Funcionário, após a autenticação pode

visualizar os relatórios de inscrição ou visualizar os dados dos beneficiários inscritos.

 Caso o funcionário seja um “Assistente Social”, além das funcionalidades

herdadas do Funcionário é possível, no caso de uso “Manter beneficiário”, fazer a

inscrição de um novo beneficiário, ou editar os dados dos inscritos partindo do fluxo

40

de “Visualizar beneficiário”. Este tipo de ator pode também acessar a funcionalidade

de “Desligar beneficiário”.

O “Coordenador” tem acesso aos casos de uso “Manter atividade”, “Visualizar

atividade” e “Manter presença”, onde ele pode registrar atividades que foram

executadas, visualizar as atividades registradas, podendo editá-las ou preencher a

presença dos beneficiários nessas atividades.

Figura 15 – Diagrama de Caso de Uso das funcionalidades

Fonte: Autoria própria (2022).

Com os Diagramas de Caso de Uso modelados, os dois primeiros requisitos

priorizados foram selecionados para a implementação na primeira versão. Necessitou-

se de uma nova reunião com a Casa do Piá, onde o fluxo modelado nos casos de uso

foi validado. Os fluxos apresentados no diagrama eram os esperados pelo cliente e

então, foi possível prosseguir para o detalhamento dos requisitos escolhidos para a

implementação nesta versão.

Para a funcionalidade de login foi necessário entender se havia preferência

pelo uso de algum tipo de nome de usuário ou e-mail para a realização do login, além

da senha. Escolheu-se usar um nome de usuário e senha do funcionário para a

autenticação.

Para a inscrição de beneficiários, perguntou-se quais os dados dos

beneficiários que devem ser coletados e salvos nesse processo. Esta questão foi

respondida com a entrega do documento digital que eles preenchem ao final do

processo de cadastro, ou seja, na etapa de transcrição para o meio digital. Este

41

modelo está disponível no Anexo A e foi definido como template para o requisito

RQF4, de geração do documento de inscrição.

Figura 16 – Protótipo da tela de login

Fonte: Autoria própria (2022).

Para a validação das funcionalidades escolhidas, criou-se protótipos

descartáveis dos requisitos selecionados, pois estes seriam mais rápidos de se

desenvolver, e é possível utilizar linguagens ou ferramentas que agilize esse

processo, pois o protótipo não será integrado ao sistema final. As telas criadas foram

implementadas com HTML e CSS, apenas para validar os campos e formatos que

estes deveriam ser preenchidos. A Figura 16 apresenta o protótipo da tela de login

dos funcionários, onde deve ser preenchido o usuário e a senha pré-definidos de

acordo com a função.

42

Figura 17 – Protótipo da tela de cadastro de beneficiário

Fonte: Autoria própria (2022).

Por ser muito extenso o formulário de inscrição, dividiu-o em duas imagens. As Figuras

Figura 17 e Figura 18 apresentam o protótipo utilizado para validar quais campos e

seus respectivos formatos seriam necessários no formulário. A Figura 17 apresenta a

primeira tela de inscrição do beneficiário. Nesta tela o funcionário deve preencher os

dados de identificação, endereço e aspectos familiares do beneficiário.

43

Figura 18 – Continuação protótipo da tela de cadastro de beneficiário

Fonte: Autoria própria (2022)

 A Figura 18 apresenta a continuação da Figura 17 que é apresentado com a

rolagem da tela do protótipo. Nesta tela são apresentadas as seções de dados da

habitação, saúde e escolaridade do beneficiário, além de dados referentes a

assistência social e o ingresso do mesmo na Casa do Piá.

Ao verificar os protótipos o cliente aprovou a tela de login e o formato dos

campos de inscrição, apresentando algumas melhorias e alguns novos campos

desejados. Na tela de inscrição, o cliente pediu que fosse adicionado um campo de

texto ao lado de cada uma das opções na seção de saúde, para ser preenchido caso

seja marcado “Sim”, além de um campo de texto para serem adicionadas observações

para a escolaridade.

3.1.2 Projeto do Software

O projeto de software ocorreu com o fim da elicitação e validação dos

requisitos na etapa de comunicação. Nesta etapa foram modelados os diagramas de

44

classe, para representar o domínio do sistema desenvolvido, e o diagrama Entidade-

Relacionamento, representando o esquema do banco de dados. Ambos os modelos

evoluíram ao longo das versões do software e representam as funcionalidades

implementadas na versão atual.

O diagrama de classes nesta versão foi apresentado separando-o em duas

figuras, para melhor abstração e organização do problema apresentado. A Figura 19

foca no domínio do beneficiário e seus dados, tendo a classe “Beneficiario” ao centro,

e seus dados separados em classes que os agrupam, categorizando-os. Enquanto a

Figura 20 é focada no funcionário e sua relação com o “Beneficiario”.

Figura 19 – Diagrama de classes da v1 focado no beneficiário

Fonte: Autoria própria (2022).

Criou-se a classe “Beneficiario”, onde ficam os dados de cadastro do inscrito.

Os dados do beneficiário foram agrupados dentro das classes “DadosPessoais”,

“Endereco”, “Familiar”, Saude”, “Escolaridade”, “Habitacao” e “AssistenciaSocial”,

criando uma categorização para os dados. As classes de dados do “Beneficiario” são

uma composição deste, pois só fazem sentido existirem com uma instância desta

45

classe. Os dados foram categorizados para melhor organização e controle de acesso

a esses dados do beneficiário, possibilitando permissões individuais para cada

categoria.

Figura 20 – Diagrama de classes da v1 focado no funcionário

Fonte: Autoria própria (2022).

A classe “Funcionario” foi criada para representar o usuário da Casa do Piá

que tem acesso ao sistema. O método estático “logar” deve retornar a instância de

“Funcionario” referente ao usuário e senha utilizados na autenticação e, somente com

este objeto disponível o usuário terá acesso às interfaces e funcionalidades

permitidas. Foi adicionado também o método “cadastrarBeneficiario” que abstrai a

possibilidade de esta classe conseguir utilizar esta funcionalidade do sistema.

Além do diagrama de classe, realizou-se também a modelagem do DER para

o planejamento e documentação da estrutura criada no banco de dados para esta

versão. A Figura 21 apresenta o Diagrama Entidade Relacionamento, na qual a

entidade “beneficiario” se relaciona às entidades que compõe os dados deles, como

por exemplo a entidade “dados_pessoais”, “saude” e “escolaridade”. A entidade

“funcionário” contêm usuário e senha para a autenticação, e seu nome.

46

Figura 21 – DER do sistema para a primeira versão

Fonte: Autoria própria (2022).

O “beneficiario” está relacionado também à entidade associativa

“beneficiario_familiar”. Nesta entidade fica armazenado o parentesco ou

relacionamento desse beneficiário com o familiar. Caso algum familiar deste inscrito

já esteja cadastrado na Casa do Piá, os familiares serão reaproveitados através deste

relacionamento.

3.1.3 Desenvolvimento da Versão 1

Iniciou-se o desenvolvimento da primeira versão do software com a

configuração do ambiente de desenvolvimento, contendo as dependências, conexão

ao banco de dados e configurações para a implantação do sistema. Em seguida foram

feitas as telas com o javaFX que serviriam para o login e cadastro dos beneficiários,

desenvolvidas utilizando o software Scene Builder. Então foram criadas as classes do

domínio do projeto; e finalmente foram implementadas as funcionalidades e atribuídas

às telas desenvolvidas.

3.1.3.1 Subversão de configuração – Configurações do sistema

Nesta seção é apresentada a subversão usada para a configuração dos

frameworks, ferramentas e dependências utilizadas no desenvolvimento do sistema.

47

Utilizou-se a ferramenta “spring initializr” com as configurações apresentadas na

Figura 9, adaptando-se apenas os metadados. Com o projeto gerado, o Springboot e

o Gradle configurados pela ferramenta, outros frameworks foram adicionados como

dependência do software a ser desenvolvido. A Figura 22 demonstra todas as seções

alteradas do arquivo “build.gradle” que foram alteradas para a entrega da versão 1 do

sistema.

Figura 22 – Dependências do sistema da Casa do Piá

Fonte: Autoria própria (2022).

Ao começar o desenvolvimento do projeto, realizou-se a configuração da

inicialização do JavaFX com o framework Spring, pois as classes devem ser

carregadas como “beans” e, por padrão, o JavaFX não é carregado pois não contêm

as anotações do Spring que as configure como tal. Para contornar essa situação,

adotou-se o framework JavaFX-weaver, que cria as anotações necessárias nas

classes do JavaFX para que estas sejam carregadas devidamente com o Spring. A

inserção do JavaFX-weaver pode ser verificada na Figura 22 como uma dependência

do sistema, na qual foi configurada pelo Gradle.

48

Configurou-se também nesta subversão a conexão com o banco de dados.

Primeiramente foi testada a conexão com o banco de dados a partir de arquivo de

nome “application.properties”, no qual são definidas configurações do projeto. Entre

as configurações, encontram-se o drive de conexão de banco de dados usado, host,

usuário e senha para a conexão.

Primeiramente foi utilizado um banco de dados configurado localmente, para

testar a conexão com o uso do Hibernate e as configurações neste arquivo, e então

foi utilizado o banco de dados criado no Heroku.

Figura 23 – Exemplo do arquivo application.properties

Fonte: Autoria própria (2022)

Um exemplo deste arquivo é apresentado na Figura 23, onde os valores

“database_host”, “database_name”, “database_username” e “database_password”

são configurados com o host, o nome, o usuário e a senha do banco de dados,

respectivamente. Há também a porta e o driver utilizado na conexão com este banco

de dados, além das configurações do Hibernate: a linguagem que será usada para as

querys geradas pelo framework; se deve ser apresentado nos logs as querys feitas no

banco de dados, e se o Hibernate deve formatá-las para serem mais legíveis. As duas

últimas foram configuradas como true durante o desenvolvimento para melhor controle

do que está sendo feito no banco de dados, mas foram trocadas para o valor “false”

ao final do desenvolvimento.

Além disso, nesta subversão utilizou-se da ferramenta Launch4j13, que

transforma um arquivo de extensão “.jar” para um arquivo executável com extensão

“.exe”, facilitando a execução da aplicação desenvolvida no Sistema Operacional

Windows. Após essa etapa, configurou-se um script na aplicação “Inno Setup” a qual

gera um instalador, permitindo que a aplicação seja executada pelo usuário com todas

as dependências para sua correta implantação.

13 Website da ferramenta Launch4j: http://launch4j.sourceforge.net/

49

3.1.3.2 Interfaces de usuário desenvolvidas

Após a configuração do ambiente de desenvolvimento, as telas foram criadas

com o uso do JavaFX. A interface gráfica do sistema se enquadrou nas conversas

levantadas durante a prototipação das mesmas, contendo um visual melhorado devido

ao uso do JavaFX em seu desenvolvimento.

Figura 24 – Tela de login do sistema

Fonte: Autoria própria (2022).

A Figura 24 ilustra a tela de login do sistema. Nesta tela, a pessoa que está utilizando

o sistema deve informar o seu usuário e senha, a fim de validar suas credenciais e

possibilitar ao mesmo o acesso às informações cadastradas no software.

Figura 25 – Tela principal da versão 1

Fonte: Autoria própria (2022).

50

Logo após ao login, o usuário é direcionado para a tela principal do sistema,

que contém botões para as funcionalidades disponíveis para uso. Nesta versão, a tela

contém apenas o menu para o cadastro de beneficiários. A tela principal é

apresentada na Figura 25 e será preenchida com mais botões de funcionalidades ao

logo dos capítulos deste trabalho.

Figura 26 – Tela de cadastro de dados e endereço do beneficiário

Fonte: Autoria própria (2022).

A Figura 26 ilustra a tela de cadastro de usuários, porém focada nos aspectos

de identificação do atendido e seu endereço. Os campos nome, data de nascimento,

naturalidade, sexo, nome do pai e nome da mãe são obrigatórios para a identificação

do usuário, sendo o campo idade calculado automaticamente quando preenchida a

data de nascimento. No endereço são obrigatórios os campos rua, número, bairro e o

primeiro telefone.

51

Figura 27 – Tela de cadastro de aspectos familiares do beneficiário

Fonte: Autoria própria (2022).

A Figura 27 ilustra a tela de cadastro de usuários focada nos aspectos

familiares do usuário atendido. Nesta tela deve ser preenchido

obrigatoriamente os campos de responsável legal, não sendo obrigatório que

haja outras pessoas com quem o usuário conviva na mesma residência.

Figura 28 – Tela de cadastro de habitação e saúde do beneficiário

Fonte: Autoria própria (2022).

A Figura 28 ilustra a tela de cadastro de usuários, focada na habitação e saúde

do atendido. Todos os componentes habilitados são obrigatórios nesta tela, tendo

alguns campos de texto que somente serão habilitados ao selecionar a opção “Outros”

em domicílio ou em edificação, ou ao selecionar “Sim” em alguma das opções de

saúde.

52

Figura 29 – Tela de cadastro de assistência social e escolaridade do beneficiário

Fonte: Autoria própria (2022).

A Figura 29 ilustra a tela de cadastro de usuários, com o foco nos campos de

assistência social, escolaridade e alguns dados para o ingresso. Os campos de NIS,

CRAS de referência e observação são opcionais, os demais campos habilitados são

obrigatórios, tendo alguns componentes de texto habilitados ao selecionar a opção

“Sim” em alguns campos, similar ao comportamento da tela representada na Figura

28.

3.1.3.3 Implementação do código-fonte

O desenvolvimento do código fonte teve o início paralelo à criação das telas.

Iniciou-se implementando as classes que compõem o domínio do software, ou seja,

aquelas modeladas no Diagrama de Classes. Estas são as principais entidades onde

os dados do sistema navegam, e têm como função garantir que as regras de negócio

serão atendidas, podendo conter validações para este propósito.

Foram criadas também as classes de entidade, que são parecidas classes de

domínio, porém específicas para o acesso ao banco de dados. Estas classes contêm

anotações do Spring e do Hibernate para que mapeiem as tabelas descritas no DER.

Um exemplo de uma classe de domínio ao lado de uma entidade é apresentado na

Figura 30.

53

Figura 30 – Classe de domínio e classe de entidade

Fonte: Autoria própria (2022).

A classe à esquerda é onde trafegam os dados de domínio na aplicação,

enquanto à direita está a classe de entidade, que auxilia no mapeamento dos objetos

do software para o banco de dados. Esta classe contém as anotações “@Table”,

“@Entity” e “@Column”, as duas primeiras indicam ao Spring e ao Hibernate que esta

classe é uma entidade e o nome da tabela que deve ser usada, enquanto a outra

anotação mapeia os nomes de cada atributo para o nome de coluna na tabela. Outro

detalhe são as anotações no atributo “beneficiario”, que fazem o mapeamento da

coluna que será uma chave estrangeira para relacionar esta tabela com a tabela

“beneficiario”, através de seu “id”. É necessário converter a classe de domínio para a

de entidade para que sejam salvos os dados de um objeto.

54

Figura 31 – Método toEntity

Fonte: Autoria própria

Foram criados métodos como o da Figura 31, que recebe como parâmetro um

objeto e o converte para a classe que tem o mapeamento para o banco de dados.

Após essa conversão é possível salvar os objetos retornados por este método através

de interfaces implementadas pelo Hibernate.

Em seguida, foram criadas as classes de serviço. Estas agrupam métodos

que operam as classes de domínio do sistema. São as implementações das

funcionalidades esperadas do software. As classes de serviço fazem parte do modelo

do software, e juntamente com o domínio do sistema, garantem as regras de negócio

funcionando.

Figura 32 – Exemplo de código da classe de serviço

Fonte: Autoria própria (2022).

O trecho de código apresentado na Figura 32 exemplifica o uso das estruturas

apresentadas anteriormente. Este método recebe uma instância de “Beneficiario” e a

partir dela são criadas e salvas as entidades para esta classe e para a

“AssistenciaSocial”. Nota-se que a instancia de “BeneficiarioEntity” é necessária para

que os dados referentes aos dados de assistência social sejam salvos, para que o

framework mapeie a chave estrangeira usada na segunda entidade. Este método faz

parte de uma classe de serviço e salva todos os dados do beneficiário, sendo

simplificado para melhor entendimento do leitor.

55

Juntamente o desenvolvimento das interfaces gráficas, as classes de controle

foram implementadas. Estas existem para que a GUI e o sistema possam conversar

entre si e disponibilizar as funcionalidades contidas nas classes de serviço ao usuário.

Figura 33 – Método da classe de controle

Fonte: Autoria própria (2022).

O método apresentado na Figura 33 faz parte da classe de controle de

cadastro e é executado ao apertar o botão de cadastrar, na última tela. O método

“preencherBeneficiario” cria uma instancia de “Beneficiario” com os dados de todos os

campos da interface gráfica. Com esta instancia, é usada a classe de serviço para

salvar o cadastro.

Para a implementação do login, quando o usuário aperta o botão para entrar

no sistema, são validados se os campos de nome de usuário e senha estão vazios ou

com apenas espaços. Caso estejam preenchidos os campos citados, é verificado no

banco de dados se há um funcionário com os dados informados. Atualmente não há

implementada uma funcionalidade de cadastro de usuários, sendo estes cadastrados

previamente pela chamada de um método na classe de serviço de funcionários

apresentada na Figura 34.

56

Figura 34 – Classe de serviço de funcionários

Fonte: Autoria própria (2022).

O método “cadastrarFuncionario” recebe uma instancia de funcionário e faz a

criptografia da senha através da biblioteca jBcrypt, para finalmente salvar o resultado

no banco de dados. Para verificar se a senha digitada pelo funcionário e a senha salva

são as mesmas, a biblioteca usada tem o método “checkpw” que executa esta função.

O uso desta biblioteca é interessante pois é usado a geração de “salt” juntamente com

o hash das senhas, garantindo que mesmo que dois usuários tenham a mesma senha,

o valor criptografado para ambas será diferente.

3.1.4 Feedback da Casa do Piá

Esta versão foi entregue para o cliente, que teve aproximadamente uma

semana para testar. Ao entrar em contato com a Casa do Piá, foram apontados alguns

pontos que deveriam ser corrigidos no sistema: (i) o tempo de inicialização do sistema

era lento; (ii) quando o cadastro de usuário tinha alguma falha, era retornada a

mensagem de que falhou, mas não apresentava o motivo da falha ou o campo que

causou o erro; e (iii) não era possível visualizar os usuários que já estavam

cadastrados.

Outro ponto levantado pelo cliente é que há alguns campos novos que eles

começariam a anotar que não estão presentes do documento de exemplo enviado.

São os campos para anotar se o beneficiário já foi repetente na escolaridade e em

saúde, se tem alguma alergia.

57

Além do feedback da Casa do Piá, foi constatado que o JavaFX poderia ser

usado para a criação dos protótipos nas versões seguintes. O desenvolvimento das

telas com a utilização do JavaFX proporcionaram um desenvolvimento rápido da

interface gráfica e sem a necessidade da implementação das funcionalidades de cada

tela. Desta forma, foram criados protótipos que após a avaliação do cliente e suas

correções, pôde ser utilizado na fase de desenvolvimento do software.

3.2 Visualização de Beneficiários e Geração do Documento de Inscrição –
Versão 2

Terminado o primeiro ciclo do modelo espiral, iniciou-se o desenvolvimento da

segunda versão do software. O processo de comunicação realizou-se juntamente com

o feedback do ciclo anterior, que resultou em algumas correções necessárias para a

entrega desta versão, além do projeto e implementação das novas funcionalidades

escolhidas para este novo ciclo de desenvolvimento. As funcionalidades escolhidas

para essa versão foram: (i) a visualização de detalhes sobre os beneficiários inscritos

e a partir do cadastro criado, (ii) a geração da documentação com os dados deste

beneficiário, além das correções propostas durante o feedback.

A Subseção 3.2.1 discorre sobre a comunicação com os funcionários da

instituição. A Subseção 3.2.2 apresenta o projeto de software atualizado com as novas

funcionalidades do sistema. A Subseção 3.2.3 aborda a implementação dos requisitos

propostos para esta versão do software. Por fim, a Subseção 3.2.4 descreve o

feedback obtido do usuário.

3.2.1 Comunicação com o cliente

Iniciou-se a comunicação para o desenvolvimento desta versão abordando o

feedback da versão anterior, pois as correções e melhorias apontadas tiveram seu

planejamento e implementação feitas neste capítulo. Durante o feedback foi

perguntado se haviam problemas nas funcionalidades ou interfaces desenvolvidas na

versão testada e, como já abordado no capítulo anterior, o cliente informou os

principais problemas: o tempo de inicialização do software; o sistema não informar o

motivo que ocasionou a falha no cadastro de um usuário; e não ser possível visualizar

58

os dados dos beneficiários cadastrados, sendo este último ponto já previsto como um

problema e priorizado logo em seguida à funcionalidade de inscrição, corrigindo-o.

Após o recebimento do feedback, foi abordado o detalhamento das

funcionalidades escolhidas para implementação: (i) apresentação de dados do

beneficiário cadastrado; e (ii) geração do documento de inscrição, onde usou-se o

template definido em comunicações anteriores. Como especificado, os dados dos

inscritos devem ser restritos apenas a quem tem autorização. O assistente social deve

ter acesso a todos esses dados, sendo o único com poder de editá-los; enquanto o

coordenador deve acessar apenas os dados necessários para o atendimento do

beneficiário: dados pessoais, saúde e escolaridade.

Criou-se os critérios de aceite nos cards “RQF3” e “RQF4” respectivamente,

referentes aos requisitos discutidos na reunião, assim como para a melhoria dos

retornos nas telas de inscrição do “RQF2” e são apresentadas na Figura 35.

Juntamente, registrou-se a melhoria no tempo de inicialização do software levantada

pelo cliente e abordada como um requisito não funcional a ser implementado nesta

versão.

Figura 35 – Cards detalhados na versão 2

Fonte: Autoria própria (2022)

Informou-se ao cliente que a partir desta versão as telas dos protótipos serão

mais próximas das telas finais pois seriam desenvolvidas já com as ferramentas que

foram utilizadas para a criação das telas para o software. Iniciou-se a etapa de

prototipação para a validação dos requisitos detalhados na comunicação.

59

Notou-se que para a visualização dos dados do beneficiário seria possível

aproveitar as interfaces já existentes de cadastro, apenas desabilitando os campos

editáveis das telas. Porém, para melhor controle de acesso aos dados, cada categoria

deve ser separada, para que sejam disponibilizadas apenas os detalhes permitidos

ao funcionário. Para isso, as telas de cadastro passaram por aprimoramentos, antes

de serem usadas para a visualização e edição dos dados. Além da separação das

categorias, os campos e fontes das interfaces foram aumentados para melhor

aproveitamento da janela. Os campos passaram por um alinhamento, trazendo um

aspecto visual mais agradável e elegante, além de facilitar para o usuário a leitura das

telas devido à fonte maior.

Os protótipos apresentados a seguir são das telas de cadastro atualizadas, e

em seguida são apresentadas as mudanças destas telas para serem utilizadas para

visualização dos dados do beneficiário

Figura 36 – Tela de cadastro de dados pessoais do beneficiário

Fonte: Autoria própria (2022).

A Figura 36 apresenta a tela de cadastro atualizada dedicada aos dados

pessoais. É possível identificar as categorias de dados separadamente, conforme as

classes criadas na versão anterior. A tela com uma quantidade menor de campos

para preencher e um espaçamento melhor dos recursos gráficos da interface a tornam

mais limpa visualmente e mais direcionada para o dado a ser preenchido.

Nesta tela, os campos de “nome” do beneficiário, e do pai e da mãe,

“naturalidade” e “falar com” passam a ser validados para conter apenas letras e

60

espaços. A data de nascimento e telefone devem conter apenas números, e somente

o telefone de recados não é de preenchimento obrigatório.

Figura 37 – Tela de cadastro de endereço do beneficiário

Fonte: Autoria própria (2022).

A Figura 37 é a tela atualizada de cadastro de endereço. Nesta tela também

foi pensado em aproveitar o uso do CEP para consultá-los no banco de dados e

preencher as informações salvas. Caso seja um novo, é consultada uma API que

retorna os dados e completa os campos de “Rua” e “Bairro/Vila”. Quando há falhas

para buscar o CEP pela API ou no banco de dados, o usuário pode preencher

manualmente estes campos. Para evitar dados incorretos, estes campos são

validados para não conter caracteres especiais.

61

Figura 38 – Tela de cadastro de aspectos familiares do beneficiário

Fonte: Autoria própria (2022).

A tela da Figura 38 possuía campos que eram preenchidos e adicionados à

tabela através de um botão “Adicionar”. Estes campos foram removidos para que

sejam inseridos os dados diretamente na tabela. A tabela está preenchida com dados

de exemplo e todos os campos são editáveis. Nesta tela, os campos de “Nome” e

“Relação com o atendido” são validados para receber apenas letras, enquanto o CPF

deve conter apenas números. Ao preencher os dados do responsável legal, o mesmo

deve aparecer na primeira coluna da tabela.

Figura 39 – Tela de cadastro de dados de habitação do beneficiário

Fonte: Autoria própria (2022).

62

A Figura 39 ilustra a tela de cadastro de dados de habitação do beneficiário.

Nesta tela os campos de texto de “Tipo de domicílio” e “Tipo de edificação”

permanecem desabilitados, caso o usuário escolha no “ComboBox” a opção “outros”,

estes serão habilitados e de preenchimento obrigatório.

Figura 40 – Tela de cadastro de dados de saúde do beneficiário

Fonte: Autoria própria (2022).

É retratada na Figura 40 a tela onde se preenche o cadastro dos dados de

saúde dos beneficiários. Esta tela tem diversos campos de “Sim” ou “Não”, e quando

se escolhe a opção positiva os campos de texto ao lado são habilitados

individualmente, tornando-se um campo de preenchimento obrigatório.

Figura 41 – Tela de cadastro de dados de escolaridade do beneficiário

Fonte: Autoria própria (2022).

63

Na tela de cadastro de dados de escolaridade do beneficiário apresentado na

Figura 41 teve seus campos aumentados e disponibilizados na tela com um

espaçamento melhor em comparação à tela antiga. Somente o campo de observações

não é obrigatório nesta tela.

Figura 42 – Tela de cadastro de dados de assistência social do beneficiário

Fonte: Autoria própria (2022).

A interface da Figura 42 contém os dados de assistência social. O número do

NIS, se preenchido, deve conter 11 números exatamente. Somente as opções de

“Sim” ou “Não” são obrigatórias nessa tela e, caso sejam preenchidos com “Sim”, os

campos descritivos ao lado de cada um se tornam mandatórios também.

Figura 43 – Tela de dados de ingresso do beneficiário

Fonte: Autoria própria (2022).

64

Por fim, na tela da Figura 43 são preenchidos os últimos dados para cadastrar

o beneficiário. Nesta tela são preenchidos a data de início, o turno e se houve

encaminhamento para a instituição. Caso haja algum erro não reportado em alguma

tela anterior, ao tentar finalizar a inscrição, será apresentada uma mensagem

explicando o erro de cadastro.

Figura 44 – Tela de busca de beneficiários

Fonte: Autoria própria (2022).

A tela da Figura 44 mostra onde o usuário poderá fazer a busca de

beneficiários para visualizar os detalhes daquele que for selecionado na lista. Também

é possível através dessa tela gerar a documentação de cadastro do mesmo. A

pesquisa pode ser feita somente digitando o nome do beneficiário desejado.

65

Figura 45 – Tela de visualização de dados pessoais

Fonte: Autoria própria (2022).

A tela da Figura 45 mostra como foi aproveitada as telas novas de cadastro

para a visualização dos detalhes do beneficiário. Todos os campos foram

desabilitados e serão preenchidos com os dados salvos do beneficiário selecionado

na tela anterior. Foi adicionado ao canto superior direito um botão para habilitar a

edição dos dados.

A partir desta versão o usuário pode cadastrar beneficiários, acessar e editar

seus dados, ou gerar a sua documentação. É possível acessar as telas de cadastro

através do menu principal. Os dados e a geração da documentação são acessíveis

pela tela de busca. Porém, não há um caminho para acessar a tela de busca e por

isso o menu principal, mostrado na Figura 46 foi atualizado, incluindo o acesso para a

tela de busca com o botão “Ativos”.

66

Figura 46 – Menu principal atualizado para a versão 2

Fonte: Autoria própria (2022).

O retorno do cliente sobre os protótipos com as alterações de tela foi bastante

positivo, pois as telas tiveram a usabilidade melhorada. A pesquisa e geração de

documento também se apresentaram de forma simples e intuitiva, sendo o esperado

dessas interfaces.

3.2.2 Projeto de software

A etapa de projeto de software nesta versão reaproveitou quase totalmente

os diagramas modelados na versão anterior. Na modelagem de classes apresentado

na Figura 47 adicionou-se apenas alguns métodos novos e as classes utilizadas para

a geração do documento de inscrição. O DER teve os novos campos adicionados,

conforme o feedback da versão anterior.

Para o requisito de visualização de dados do beneficiário, foi adicionado à

classe “Beneficiario” o método “buscarBeneficiario”. Neste método será recebido o

parâmetro “nome” e, ao buscar no banco de dados, é retornada uma lista de objetos

desta classe que contêm o valor pesquisado. Outro método adicionado é o

“visualizarDados”, responsável por retornar o objeto com os dados permitidos ao

funcionário que o utilizar.

67

Figura 47 – Diagrama de classe da versão 2

Fonte: Autoria própria (2022).

Foi criada a classe “DocumentoCadastro”, representando a classe que irá

implementar a geração de documento de cadastro do beneficiário. Esta classe contém

o método “gerarDocumento”, que recebe como parâmetro a instância de

“Beneficiario”, e o documento é preenchido a partir dos dados contidos neste objeto.

Além disso, há um atributo “CAMINHO_TEMPLATE” que indica a pasta onde está o

documento a ser preenchido com os dados recebidos.

68

Figura 48 – DER atualizado da versão 2

Fonte: Autoria própria (2022).

O DER atualizado é apresentado na Figura 48. Neste diagrama foram

adicionados os campos “des_repetente” e “des_alergia” para cumprir o que foi pedido

pelo cliente no feedback.

3.2.3 Desenvolvimento

Adotou-se como prelúdio ao desenvolvimento, a investigação da razão para o

longo tempo de carregamento do sistema. Verificou-se através dos logs gerados pelo

Spring que a etapa de inicialização do Hibernate tomava o maior tempo de

carregamento, sendo o causador do problema levantado pelo cliente.

A inicialização do Hibernate conta com algumas validações, checagens de

metadados e até mesmo a criação tabelas novas caso as mesmas não existam no

banco de dados, tendo um alto tempo de carregamento. Para contornar esse

problema, as propriedades da Figura 49 foram adicionadas ao arquivo

“application.properties”.

Figura 49 – Propriedades adicionadas ao Hibernate

Fonte: Autoria própria (2022).

69

A primeira propriedade desativa a validação e verificação de tabelas que

devem existir, serem criadas ou atualizadas na estrutura do banco de dados. A

segunda propriedade desativa a consulta para a configuração padrão para momentos

de indisponibilidade do banco de dados. Ambas as configurações puderam ser

implementadas, pois não há previsão de indisponibilidade do banco de dados durante

o uso da aplicação e não utilizou-se do gerenciamento da estrutura de tabelas do

Hibernate.

Figura 50 – Exemplo de pop-up usado

Fonte: Autoria própria (2022).

A melhoria dos retornos nas telas de cadastro consistiu de aplicar validações em

campos preenchidos pelo usuário. Quando o botão de “Cadastrar” é pressionado e há

campos que não estão de acordo com as validações, ou campos vazios, é aberta uma

pequena janela pop-up avisando o usuário que há problemas para prosseguir, como

apresentado na Figura 50.

Figura 51 – Código para apresentação de mensagem pop-up

Fonte: Autoria própria (2022).

Foi criada uma tela padrão para o pop-up, e um método estático, apresentado

na Figura 51, para facilitar o uso desta interface. A mensagem mostrada nessa tela é

alterada com o método “setMessage”. Este método estático pode ser chamado de

70

qualquer tela, apresentando a mensagem desejada. A criação deste pop-up neste

formato aprimorou a interação das interfaces com o usuário.

Figura 52 – Campos destacados com dados inválidos

Fonte: Autoria própria (2022).

Além da janela apresentada, para que o usuário possa identificar rapidamente

onde está o problema, os campos que não estão em conformidade com as validações

são destacados. O contorno dos campos é destacado em vermelho e é apresentada

uma mensagem detalhando o problema, como na Figura 52.

Figura 53 – Apresentação de um campo inválido

Fonte: Autoria própria (2022).

O trecho de código da Figura 53 aplica uma classe criada em CSS ao campo

indicado como inválido, então o JavaFX atualiza a formatação usada obtendo a

aparência exemplificada na Figura 52. Além disso, a mensagem informada no

parâmetro “errorMessage” é apresentada logo após o campo, explicando o que

causou o erro.

Para a visualização dos dados do usuário foi necessária a implementação de

duas consultas ao banco de dados. A primeira consulta retorna a lista de todos

beneficiários ativos atualmente, enquanto a segunda consulta retorna o beneficiário

escolhido para a visualização dos dados.

71

Figura 54 – Método para filtrar os nomes dos beneficiários

Fonte: Autoria própria (2022).

O trecho de código da Figura 54 recebe a lista de beneficiários retornada pelo

banco de dados, compara o texto digitado na barra de pesquisa e filtra os usuários

que contém este texto no nome. Ao escolher um dos nomes e clicar no botão de

visualizar detalhes, é realizada uma nova busca no banco de dados direcionada ao

beneficiário que teve o nome selecionado, retornando os dados que não foram

carregados na primeira consulta.

Figura 55 – Método para busca de dados de beneficiários

Fonte: Autoria própria (2022).

A primeira consulta foi desenvolvida com o método apresentado na Figura 55,

onde o Hibernate faz com que este método funcione de acordo com o nome e

parâmetros recebidos, sem que precise desenvolver a consulta manualmente. Na

versão atual este método retorna todos os beneficiários, pois todos estão com o status

ativo. Foi implementado desta forma, prevendo o desligamento dos beneficiários, que

mudará o valor deste status. A segunda consulta é implementada automaticamente

pelo framework ao usar a extensão à classe “JpaRepository”.

Figura 56 – Métodos de serviço do beneficiário

Fonte: Autoria própria (2022).

72

Para tratar o retorno das consultas apresentadas acima, foram adicionados

na classe de serviço do beneficiário dois novos métodos utilizando, respectivamente

o retorno das consultas mostradas na Figura 56. O primeiro método implementa a

busca para os inscritos ativos, fazendo os resultados passarem pela conversão dos

dados da entidade para a classe de domínio. Enquanto o segundo método retorna

apenas uma entidade, referente a um beneficiário selecionado na busca.

Figura 57 – Método “fromEntity”

Fonte: Autoria própria (2022).

Os métodos implementados na classe de repositório retornam objetos de

entidade que devem ser convertidos para as classes do domínio. Para isto, foram

implementados métodos chamados “fromEntity” que convertem as entidades

encontradas para objetos do domínio, que são usados para apresentar os dados para

o usuário do sistema. Durante a conversão de entidade para o domínio, também são

validados os dados recuperados. Por exemplo, se algum dos atributos que deveriam

estar preenchidos e estiverem nulos, é retornado ao cliente que houve um erro para

buscar esses dados. Um dos métodos implementados para essa conversão é

apresentado na Figura 57.

Figura 58 – Método para atualização de dados do beneficiário

Fonte: Autoria própria (2022).

Para atualizar os dados do beneficiário foram usados métodos como o da

Figura 58. No exemplo é usado a anotação “@Transactional” que indica ao programa

que se houver falhas durante a atualização dos dados deve-se dar rollback na

73

alteração, ou seja, retornar ao estado anterior à atualização e informar ao usuário a

falha para atualizar. Este método atualiza os dados da entidade, e ao fazer a chamada

ao “session.flush()” o estado da entidade é atualizada no banco de dados.

Figura 59 – Método que faz a consulta na API de CEPs

Fonte: Autoria própria (2022).

Outro método implementado nesta versão é apresentado na Figura 59. Esta

função recebe como parâmetro o número do CEP e faz uma requisição para o serviço

“viacep”, que retorna os dados de endereço para este valor. O retorno do serviço é

convertido em um objeto com os atributos preenchidos. A implementação deste

método agiliza o processo do usuário ao cadastrar o endereço, precisando digitar

menos dados para completar o formulário.

Para a geração do documento de inscrição dos beneficiários, foram

aproveitados também os métodos implementados para a visualização de suas

informações pois, é necessário o preenchimento de todos atributos da classe

“Beneficiario” para que o documento seja gerado. A classe “DocumentoCadastro”

recebe um objeto de “Beneficiario” como parâmetro do método “gerarDocumento”.

74

Figura 60 – Método de geração de documento de inscrição

Fonte: Autoria própria (2022).

O método apresentado na Figura 60 busca por um padrão definido no código

e preenchido no template, e faz a substituição destes pelos dados salvos do

beneficiário. Desta forma, todos os campos são preenchidos automaticamente com

os dados atualizados. Também é lançada uma exceção com mensagem de erro caso

ocorra alguma falha durante a criação do documento.

3.2.4 Feedback da Casa do Piá

Algum tempo após o envio da nova versão para a Casa do Piá, foi realizada

uma nova reunião. Esta nova comunicação possibilitou que o cliente traga suas

conclusões e possíveis melhorias encontradas na versão desenvolvida, tornando o

sistema mais próximo das necessidades do cliente.

As alterações nas telas de cadastro foram bem recebidas. De acordo com o

cliente, apesar de não ter sido comentado na versão anterior, o tamanho da fonte

presente era muito pequena e dificultava a leitura.

Outro ponto que passou despercebido nas versões anteriores foi a

recuperação de senha. Não há nenhum mecanismo para o usuário redefinir a senha

caso a tenha esquecido e, ao passar por esse problema, o cliente notou e pediu que

fosse adicionado essa funcionalidade.

75

3.3 Versão 3 – Relatórios e desligamento de beneficiários

Este novo ciclo do modelo espiral iniciou-se juntamente com o feedback da

versão anterior. Na etapa de comunicação, obteve-se mais detalhes para o projeto e

implementação das novas funcionalidades escolhidas para essa versão, e dos pontos

levantados no feedback da versão anterior. As funcionalidades desenvolvidas nesta

versão foram o desligamento de beneficiário e os relatórios sobre os inscritos, além

da recuperação de senha proposta durante o feedback.

A Subseção 3.3.1 discorre sobre a comunicação com os funcionários da

instituição. A Subseção 3.3.2 apresenta o projeto de software atualizado com as novas

funcionalidades do sistema. A Subseção 3.3.3 aborda a implementação dos requisitos

propostos para esta versão do software. Por fim, a Subseção 3.3.4 descreve o

feedback obtido do usuário.

3.3.1 Comunicação com a Casa do Piá

Esta etapa iniciou-se juntamente com a comunicação na qual se realizou o

feedback da versão anterior. Foi pedido pela Casa do Piá uma forma de recuperar a

senha na tela de login. Para cumprir este requisito, foi decidido que no lugar do nome

de usuário para o login, será usado o e-mail institucional dos funcionários. Esta

mudança possibilita o envio de um e-mail para a redefinição da senha.

Figura 61 – Telas de recuperação de senha

Fonte: Autoria própria (2022).

As telas do fluxo de redefinição de senha são apresentadas na Figura 61. O

funcionário, ao clicar na opção de “esqueci a senha”, deverá informar o e-mail que

76

deseja recuperar. Então o usuário receberá um código para digitar na tela seguinte.

Na última tela ele pode digitar sua nova senha.

Após anotados os pontos de melhoria apontados pelo cliente, foram

detalhados os requisitos funcionais RQF5 – visualização de relatórios sobre os

inscritos no sistema; e RQF6 – desligamento dos beneficiários da instituição. Os

funcionários da Casa do Piá desejavam, através do software, ter em mãos os

seguintes relatórios:

• quantidade de beneficiários atendidos, classificando-os por sexo;

• quantidade de famílias atendidas;

• quantidade de beneficiários que frequentam cada turno, classificando-

os por sexo;

• quantos recebem Auxilio Brasil;

• quantos possuem Cadastro Único;

• quantidade de desligamentos por mês.

Para isso, é necessária uma nova tela que contenha as informações

desejadas. Inicialmente, foi pensada em uma tela com diversos gráficos por exemplo,

gráficos de barras ou de pizza. Ao questionar para a Casa do Piá a preferência para

o formato dos relatórios, obteve-se a resposta de que inicialmente precisam apenas

dos dados numéricos, pois estes são consultados, copiados e usados. O protótipo da

Figura 62 foi pensado como uma forma de tentar dispor os dados pedidos pelo cliente

de forma organizada e bem espaçada.

77

Figura 62 – Tela de relatórios

Fonte: Autoria própria (2022).

O desligamento também necessitou de uma nova tela, onde o beneficiário

seja selecionado para que este seja desligado. Além da mudança do status do

beneficiário para inativo, é necessário registrar o motivo do desligamento. Foi

perguntado quais os principais motivos que levam a esta ação, para que sejam

considerados no desenvolvimento desta nova interface. Os principais motivos são: (i)

mudança de endereço (município/região/bairro), (ii) a pedido do responsável e (iii) por

idade. Com o fim desta reunião, iniciou-se a prototipação das novas telas.

Figura 63 –Tela de busca de beneficiários

Fonte: Autoria própria (2022).

78

A tela da Figura 63 mostra onde o usuário pode encontrar o acesso à

funcionalidade de desligamento. Ao selecionar um dos nomes encontrados pela busca

de beneficiários, o usuário deve clicar no botão de desligamento que o encaminha

para a nova tela, já mostrando qual é o beneficiário que será desligado.

Figura 64 – Tela de desligamento de beneficiários

Fonte: Autoria própria (2022).

A nova tela, apresentada na Figura 64, é onde será realizado o desligamento

de beneficiários. O primeiro campo mostra o nome do beneficiário a ser desligado,

selecionado na tela anterior. Em seguida, é necessário preencher a data do

desligamento. Ao final, o usuário deve escolher um dos motivos de desligamento

adicionados à tela por serem os mais frequentes, agilizando o trabalho do usuário, e

caso não seja uma das opções de motivos de desligamento, o funcionário deve

selecionar “Outros” e digitar a razão do desligamento para então concluir o

desligamento.

3.3.2 Projeto de Software

Nesta versão foram atualizados tanto o diagrama de classe quanto o DER.

Apesar de alterações pequenas, ambos os diagramas tiveram alguns ajustes para a

implementação dos requisitos.

79

Figura 65 – Classe “Beneficiario” atualizada na versão 3

Fonte: Autoria própria (2022).

As alterações do Diagrama de Classe são apresentadas na Figura 65. Na

classe “Beneficiario” adicionou-se um novo atributo “motivoDesligamento”, para salvar

o valor preenchido para este campo durante o desligamento. Foi alterado também o

atributo “usuario” na classe “Funcionario” para cumprir o requisito de recuperação de

senha. Além da nova classe “Relatorio” adicionada nesta nova versão do Diagrama

de Classe.

A classe “Relatorio” contém todos os dados necessários ao usuário e somente

é instanciada pelo método estático “buscarRelatorio”. Este método recebe como

parâmetro um “MonthYear”, ou seja, o mês e ano referente ao relatório que deve ser

buscado. Com esse parâmetro recebido, é buscado no banco de dados as

informações desejadas e instanciado o relatório completo, preenchendo a tela

apresentada no protótipo.

80

Figura 66 – DER atualizado com a entidade desligamento

Fonte: Autoria própria (2022).

O DER apresentado na Figura 66 não teve alterações referente aos relatórios,

pois estes são obtidos apenas com consultas ao banco de dados. Porém, uma nova

entidade foi criada para representar o desligamento de beneficiários, onde são salvos

a data de desligamento e o motivo de desligamento.

Foi criada esta nova entidade apenas no DER e não no Diagrama de Classe,

pois a classe “Beneficiario” agrupa os dados referentes ao cadastro, enquanto no

banco de dados o desligamento pode ser considerado uma entidade independente.

Isto acontece porque quando os dados são cadastrados, o beneficiário não tem um

registro nesta tabela, e só passa a ter quando é realizado o desligamento deste. A

criação desta entidade tira a dependência das colunas relacionadas ao desligamento

dos dados do beneficiário.

3.3.3 Desenvolvimento

Iniciou-se o desenvolvimento fazendo as alterações pedidas no feedback da

versão anterior. A classe “Funcionario” teve a alteração do atributo “usuário” pelo

atributo “email” tanto na classe de domínio quanto na de entidade. Em seguida, foi

necessário criar um método na classe de serviço que mandasse um e-mail para o

funcionário fazer a recuperação de senha.

81

Figura 67 – Método para envio de e-mail de recuperação de senha

Fonte: Autoria própria (2022).

O trecho de código da Figura 67 tem dois métodos, o primeiro faz as

configurações para o envio de e-mail; o segundo faz o envio do e-mail, após ter a

“session” configurada pelo primeiro. O segundo método é chamado pela classe de

serviço de beneficiário, onde são passados os parâmetros: (i) “title”, o título do e-mail;

(ii) “msg”, o corpo da mensagem; e (iii) “toEmail”, a lista de e-mails de destino.

Figura 68 – Chamada do envio de e-mail

Fonte: Autoria própria (2022).

A Figura 68 faz a chamada do método apresentado anteriormente. É criado

um token que é salvo e enviado para o e-mail informado. O usuário deve então buscar

o e-mail recebido e digitar o token para ser direcionado à tela de redefinição de senha.

Foi utilizado este formato para garantir a criptografia já utilizada para as senhas em

sua redefinição.

82

Em seguida, foi implementado o desligamento dos beneficiários. Para este

requisito, foi desenvolvida a classe de entidade “Desligamento”, apresentado na

Figura 69.

Figura 69 – Classe de entidade "Desligamento"

Fonte: Autoria própria (2022).

Esta classe fará o mapeamento dos dados necessários para desligar os

beneficiários da Casa do Piá e é instanciada diretamente no serviço que realiza esta

ação. O método da Figura 70 faz o uso desta nova entidade, sendo o principal trecho

de código para esta funcionalidade.

Figura 70 – Método de desligamento do beneficiário

Fonte: Autoria própria (2022).

83

No trecho de código acima, é criada a entidade de desligamento com os seus

atributos preenchidos e salva no banco de dados. Além disso, o status do beneficiário

é alterado para refletir o desligamento. O método apresentado acima utiliza a

anotação “@Transactional” para evitar inconsistências na base. Por exemplo, se a

entidade de desligamento for salva, mas houver alguma falha para salvar o status do

beneficiário como “INATIVO”, será feito o rollback e o usuário informado que houve

alguma falha. Foi iniciada então a implementação do próximo requisito.

A criação dos relatórios precisou de uma consulta que retorne todos os seus

atributos preenchidos. Para isto, utilizou-se o repositório de usuários juntamente com

a anotação “@Query”, que aceita querys personalizadas ao banco de dados para

retornar os dados do relatório, preenchendo seus atributos. Foram utilizadas

“nativeQuerys”, ou seja, querys na linguagem nativa do banco de dados, em vez do

uso da linguagem do Hibernate. Não foi criado um repositório próprio para a classe

“Repositorio”, pois esta não tem uma entidade própria na base de dados.

Figura 71 – Querys para dados do relatório

Fonte: Autoria própria (2022).

A Figura 71 apresenta algumas das querys utilizadas para capturar os

atributos da classe “Relatorio”. Ao fazer um “count” em alguma coluna, é retornado o

número de ids de beneficiários que foram atendidos e nas querys usadas, este foram

agrupados por sexo. Isto possibilitou coletar três atributos de “Relatorio” em uma

query, pois é contado a quantidade de meninos e meninas do período vespertino, e o

total é obtido com a soma destes.

84

3.3.4 Feedback da Casa do Piá

Para os funcionários elaborarem o feedback, novamente tiveram um tempo

para testar a nova versão do software. Após esse tempo, foi marcada uma nova

reunião com a instituição para que trouxessem os pontos de melhorias.

Nesta versão, as funcionalidades e correções implementadas foram

consideradas como corretas pelo cliente. Quando um jovem passa pelo desligamento,

este deixa de constar entre os beneficiários ativos, assim como esperado. Os

relatórios gerados trazem os dados corretos e facilmente utilizáveis pelos funcionários

da Casa do Piá. Além da recuperação da senha, que traz uma forma fácil de resolver

o problema causado pelo seu esquecimento.

Somente um ponto de melhoria foi levantado pela Casa do Piá, sendo ele, a

necessidade de acessar alguns dos dados dos beneficiários, mesmo após desligados.

Portanto, foi pedido que estes inscritos inativos sejam disponibilizados em alguma

nova tela, separadamente dos ativos.

3.4 Versão 4 – Registro de atividades e presença de beneficiários

Este novo ciclo do modelo espiral iniciou-se juntamente com o feedback da

versão anterior. Na etapa de comunicação, obteve-se mais detalhes para o projeto e

implementação das novas funcionalidades escolhidas para essa versão, e dos pontos

levantados no feedback da versão anterior. As funcionalidades desenvolvidas nesta

versão foram o registro de atividades e da presença dos beneficiários, além das

correções propostas durante o feedback.

A Subseção 3.4.1 discorre sobre a comunicação com os funcionários da

instituição. A Subseção 3.4.2 apresenta o projeto de software atualizado com as novas

funcionalidades do sistema. A Subseção 3.4.3 aborda a implementação dos requisitos

propostos para esta versão do software. Por fim, a Subseção 3.4.4 descreve o

feedback obtido do usuário.

85

3.4.1 Comunicação

Esta etapa iniciou-se juntamente com a comunicação na qual se realizou o

feedback da versão anterior. Como citado, é necessário a consulta aos dados de

beneficiários inativos. Estes já não podem mais ter interações novas com atividades,

ou a geração do documento de inscrição devido ao seu status e, para evitar a confusão

do usuário, a nova tela só apresentará estes inscritos inativos e somente com a

possibilidade da consulta de seus dados, como no protótipo da Figura 72.

Figura 72 – Protótipo tela de busca de beneficiários inativos

Fonte: Autoria própria (2022).

O protótipo apresentado é similar à busca de beneficiários ativos, tendo as

funcionalidades que não cabem aos inativos, sendo possível pesquisá-los para

visualizar seus dados. Além disso, a tela de detalhes também não deve permitir mais

a edição dos dados do beneficiário cujo dados são apresentados.

Para detalhar o RQF7 – registro da realização de uma atividade, perguntou-

se os principais dados que são anotados para as atividades realizadas. Estes são: um

nome para a atividade, a data de realização, o turno em que será realizada e uma

breve descrição da atividade. Outro ponto importante das atividades é a participação

dos beneficiários, que precisam se inscrever naquelas que eles tiverem interesse,

necessitando de um campo para que isso seja registrado. O protótipo desta tela é

apresentado na Figura 73.

86

Figura 73 – Protótipo da tela de cadastro de atividades

Fonte: Autoria própria (2022).

O protótipo criado contém os campos “Nome da Atividade”, “Data da

Atividade”, “Turno” e “Descrição”, onde são preenchidos os dados necessários para o

registro da atividade. Além disso, há uma tabela que será preenchida com os nomes

dos beneficiários aptos a participar desta atividade, ou seja, que estejam ativos na

data de realização e que frequentem a entidade social no mesmo período da

realização da atividade.

Figura 74 – Protótipo da tela de edição de atividades

Fonte: Autoria própria (2022).

Além da criação da atividade, foi prototipada a tela da Figura 74. Nesta tela o

usuário pode editar os dados da atividade. Foi necessária a criação deste protótipo

87

pensando que novos beneficiários podem se cadastrar na atividade, ou alguns

detalhes na descrição ou até mesmo a data de realização podem mudar

inesperadamente.

O RQF8 – presença dos beneficiários necessitou um entendimento de como

são registradas as presenças sem o uso do software. O cliente explicou que o

coordenador registra a quantidade de faltas mensalmente e então é calculado a

porcentagem de presença do usuário a partir da quantidade de atividades realizadas

e de faltas.

Figura 75 – Protótipo da tela de presença de beneficiários

Fonte: Autoria própria (2022).

A tela da Figura 75 mostra a tela prototipada para o requisito RQF8. O usuário

poderá selecionar o mês e o ano de referência para o registro das faltas dos

beneficiários. Usou-se uma tabela que conterá os nomes dos beneficiários e o campo

falta será preenchido com o número de faltas. Além disso, caso o usuário necessite

alterar a quantidade de faltas de um beneficiário específico, ele pode realizar a

pesquisa por nome. Os protótipos foram apresentados à Casa do Piá, que os aprovou.

3.4.2 Projeto de Software

Esta versão teve alterações tanto no Diagrama de Classe quanto no DER.

Novas classes foram criadas para o registro de atividades e de faltas dos beneficiários,

88

utilizando as classes criadas em versões anteriores somente em seus atributos. A

Figura 76 apresenta o Diagrama de Classe atualizado.

Figura 76 – Diagrama de Classe da Versão 4

Fonte: Autoria própria (2022).

As classes “Atividade” e “Faltas” foram adicionadas ao diagrama para que os

requisitos RQF7 e RQF8 sejam implementados, respectivamente. A classe “Atividade”

tem o método estático “criarAtividade”, responsável por instanciar e salvar o objeto

desta classe.

89

Figura 77 – DER atualizado da Versão 4

Fonte: Autoria própria (2022).

A Figura 77 mostra o DER cortado, com foco nas entidades que foram criadas

e seus relacionamentos. A entidade “faltas” tem o relacionamento com o “beneficiario”,

pois é onde as faltas desta outra entidade que serão apresentadas. A entidade

“atividade” se relaciona com “beneficiario” através de uma entidade associativa, como

resultado da normalização do relacionamento “n para n” entre as duas entidades. Este

relacionamento se dá devido à lista de beneficiários que é inscrito em uma atividade.

Não houveram alterações resultantes das correções pedidas pelo cliente na

versão anterior. Esta funcionalidade será implementada apenas com uma consulta

que será utilizada na nova tela.

3.4.3 Desenvolvimento

Primeiramente foram implementadas as correções pedidas pela Casa do Piá.

As buscas implementadas na versão anterior já faziam um filtro para não retornar os

beneficiários inativos e, verificou-se que esta busca poderia facilmente ser convertida

para retornar os inscritos com o status desejado, sendo ele “ativo” ou “inativo”.

90

Figura 78 – Método de busca de beneficiários por status

Fonte: Autoria própria (2022).

A Figura 78 mostra as alterações que o método de busca passou para cumprir

os requisitos desta nova versão. O trecho de código acima da divisória é o método

antes da adaptação desta versão, e abaixo da divisória é o resultado. A busca passa

a receber um parâmetro booleano “ativo”, que representa se os beneficiários

buscados serão os ativos, alterando status que será buscado no banco de dados.

Para que as atividades e faltas sejam salvas, criou-se uma estrutura similar

ao implementado para a classe “Beneficiario”. A classe “Atividade” tem uma classe de

entidade, “AtividadeEntity”, que a mapeia para o banco de dados, uma classe de

serviços que é chamada pelo controlador da tela, e uma classe repositório,

apresentada na Figura 79, para fazer as chamadas ao banco de dados.

Figura 79 – Classe de repositório de atividades

Fonte: Autoria própria (2022).

A classe apresentada estende a interface “JpaRepository”, que por sua vez é

implementada pelo Hibernate. Foi criado o método com o padrão de nome esperado

pelo framework “findAtividadeEntityOrderByDataRealizacao”, que busca todas as

atividades do banco de dados e as ordena pela data de realização da atividade. O

método para salvar um objeto de “Atividade” já é gerado automaticamente pelo

Hibernate também.

91

Figura 80 – Mapeamento de entidade associativa com Hibernate

Fonte: Autoria própria (2022).

A Figura 80 mostra como é feito o mapeamento do Hibernate para a criação

de uma entidade associativa no banco de dados. A anotação “@JoinTable” indica que

há uma tabela representando esse relacionamento entre duas entidades, enquanto as

anotações “@JoinColumn” indicam a chave estrangeira utilizada para o

relacionamento das entidades.

Figura 81 – Busca de atividades do beneficiário em um mês

Fonte: Autoria própria (2022).

Por fim, as faltas seguem a estrutura padrão apresentada anteriormente. Para

que seja calculado a porcentagem de faltas de um beneficiário em um mês, é utilizado

o método da Figura 81 para contar a quantidade de atividades realizadas. Também é

contada a quantidade de faltas num método similar ao apresentado para que o calculo

seja realizado.

3.4.4 Feedback da Casa do Piá

Ao fim da implementação, o software realiza o cadastro de inscritos que

podem ser editados, ter o seu documento de inscrição gerados, ou serem desligados.

As atividades podem ser cadastradas no sistema contendo beneficiários associados

a elas. As faltas dos beneficiários são contabilizadas no sistema, que também calcula

a porcentagem de faltas por atividades realizadas no mês.

92

 Foi gerado então, o arquivo executável e enviado à Casa do Piá, que teve um

tempo para testá-lo. Após o período de teste, foi recebido o feedback de que o

software supriu as necessidades elicitadas no escopo do sistema.

93

4 CONCLUSÃO

Este trabalho propôs o desenvolvimento de um sistema que gere documentos

para a Casa do Piá, além de armazenar e proteger os dados dos usuários atendidos

pela instituição, evita um processo que sem o uso do software é laborioso e repetitivo.

Para o desenvolvimento do trabalho, aplicou-se o fluxo de processo do

modelo espiral. Ao início de cada ciclo foi realizada uma comunicação com o cliente,

na qual foram obtidos requisitos e/ou correções que foram documentados, priorizados,

prototipados, validados, modelados e finalmente implementados nas etapas seguintes

deste ou de ciclos posteriores.

Para a implementação do sistema fez-se uso de frameworks e ferramentas

que auxiliaram na codificação de um software de código fonte limpo, focado na

manutenibilidade e de qualidade de software. Para a implantação do software, foi

utilizada uma ferramenta para criar um instalador personalizado, facilitando esta tarefa

para o utilizador da aplicação.

Notou-se no desenvolvimento deste trabalho que o uso de princípios da

engenharia de requisitos mitigou diversos erros que poderiam ter sido encontrados

apenas ao fim da implementação do software. Durante a elicitação de requisitos, a

padronização das funcionalidades desejadas pelo cliente facilitou a escolha dos

requisitos a serem implementados em cada versão. Enquanto o uso da prototipagem

ajudou os clientes a validarem em fases iniciais de cada versão se as suas

expectativas estavam atendidas.

Durante a implementação do software também foi notado que muitas

estruturas e padrões criados em versões anteriores puderam ser reutilizados. Isto

agilizou a implementação de novas funcionalidades em cada versão. Tal

reaproveitamento ainda aconteceria caso toda a implementação do sistema fosse

realizada em uma única versão, porém, as atualizações constantes nos diagramas e

o foco apenas nas funcionalidades escolhidas ciclo a ciclo, otimizaram a percepção e

a estruturação para o reaproveitamento de código fonte.

Além disso, a aplicação do modelo espiral para o desenvolvimento do

software proporcionou um contato constante com a Casa do Piá, ampliando os

benefícios das etapas de engenharia de software. O cliente pôde experienciar as

mudanças sofridas pelo sistema e manifestar mais claramente as suas necessidades.

94

4.1 Trabalhos futuros

O desenvolvimento desse trabalho satisfez as necessidades da Casa do Piá,

porém outros processos poderiam ser automatizados. A seguir são descritas algumas

possibilidades de trabalhos futuros:

• Implementação de módulos como: controle financeiro; controle de

funcionários; e controle de materiais e recursos;

• Integrar o sistema desenvolvido com sistemas do governo para sincronizar

dados já existentes;

• Transformar o trabalho em uma aplicação personalizável e de código livre

para que qualquer instituição de assistência social do Brasil pudesse utilizá-

la.

• Melhorias na interface de usuário, utilizando conceitos de IHC

95

REFERÊNCIAS

ANDERSON, D.; CARMICHAEL, A. Kanban Essencial Condensado. 2. ed. Seatle: Lean Kanban
University Press, 2016.

BOOCH, G.; RUMBAUGH, J.; JACOBSON, I. UML: guia do usuário. Elsevier Brasil, 2006.

BOEHM, B. W. A Spiral Model of Software Development and Enhancement. IEEE Computer, v.
21, n. 5, 1988, p. 61-72

BRASIL. Lei n. 8.742 de 7 de dezembro de 1993. Dispõe sobre a organização da Assistência Social
e dá outras providências. Disponível em: http://www.planalto.gov.br/ccivil_03/leis/l8742.htm. Acesso
em: 10 set. 2020. (Lei Federal).

CENTRO Social Casa do Piá. [S. l.], 1 jan. 2014. Disponível em: http://irsc.org.br/casa-do-
pia/conheca.php. Acesso em: 18 jun. 2020.

CHRISTEL, M. G.; KANG, K, C. Issues in Requirements Elicitation. Software Engineering Institute,
CMU/SEI-92-TR-12 7, Setembro de 1992.

EASYBACKLOG. Ferramenta EasyBacklog. [S.l.]: EasyBacklog, 2021. Disponível em:
https://easybacklog.com. Acesso em 07 dez. 2021.

GAMMA, E. et al. Padrões de Projetos: soluções reutilizáveis de software orientado a objetos. Grupo
A, 2011. 9788577800469. Disponível em:
https://integrada.minhabiblioteca.com.br/#/books/9788577800469/. Acesso em: 05 dez. 2021.

GUEDES, Gilleanes TA. UML 2-Uma abordagem prática. Novatec Editora, 2011.

JUNIOR N.; AFONSO, A. Produtividade no Desenvolvimento de Aplicações Web com Spring
Boot. AlgaWorks Softwares, Janeiro de 2017.

LOMBOK. Framework Lombok. [S.l.]: Lombok, 2021. Disponível em: https://projectlombok.org.
Acesso em 07 dez. 2021.

MKLABS. Ferramenta StarUml. [S.l.]: MKLabs, 2021. Disponível em: https:// https://staruml.io.
Acesso em 07 dez. 2021.

PONTA GROSSA (PR). Resolução n. 2 de 20 de fevereiro de 2020. Dispõe sobre a
regulamentação da documentação para manutenção das inscrições de entidades e serviços
socioassistenciais no CMAS. Disponível em: https://cmas.pontagrossa.pr.gov.br/wp-
content/uploads/2020/03/Resolu%C3%A7%C3%A3o-02-documentos-manuten%C3%A7%C3%A3o-
inscri%C3%A7%C3%A3o-CMAS-2020.pdf. Acesso em: 15 out. 2022. (Lei Municipal).

PFLEEGER, S. L. Software Engineering: Theory and Practice. 4. ed. Nova Jersey, EUA: Pearson
Higher Education, 2010.

PRESSMAN, R. S. Engenharia de software: uma abordagem profissional. 7. ed. Porto Alegre, RS:
AMGH, 2011. 780 p. ISBN 9788563308337.

RUSSEL, J. Ferramenta Inno Setup. [S.l.]: Jordan Russel, 2021. Disponível em:
https://jrsoftware.org/isinfo.php. Acesso em: 07 dez. 2021.

SILBERSCHATZ, A. Sistema de Banco de Dados. Grupo GEN, 2020. 9788595157552. Disponível
em: https://integrada.minhabiblioteca.com.br/#/books/9788595157552/. Acesso em: 10 nov. 2021.

96

SOFTWARE. In: DICIO, Dicionário Online de Português. Porto: 7Graus, 2021. Disponível em:
https://www.dicio.com.br/software/. Acesso em: 20 out. 2021.

SOMMERVILLE, I. Engenharia de software. 9. ed. São Paulo, SP: Pearson Prentice Hall, 2011. xiii,
529 p. ISBN 9788579361081.

VMWARE, Inc. Spring: Core Technologies. [S.l.]: VMware, 2021. Disponível em:
https://docs.spring.io/spring-framework/docs/current/reference/html/core.html#beans-introduction.
Acesso em: 07 dez. 2021

YASUHIRO, M. Sistema Toyota de Produção: Grupo A, 2015. 9788582602164. Disponível em:
https://integrada.minhabiblioteca.com.br/#/books/9788582602164/. Acesso em: 17 Mar 2021.

97

ANEXO A – Modelo do Documento de Cadastro da Casa do Piá

1

2 ABASE

2.1 Aliança Brasileira de Assistência Social e
Educacional

Mantenedora do Projeto Casa do Piá

Rua Maurício de Nassau, 560. CEP 84.070.330 - Vila
Madureira

2.1.1.1 Ponta Grossa-PR - Fone/Fax (042) 3027.6070

CNPJ - 62.207.634/0013-00 - CNSS 44513/67

Inscrição das crianças e/ou adolescentes inseridos no projeto.

INSCRIÇÃO
NÚMERO:

001/21

1-Identificação do atendido:

Nome:

Data de nascimento: Idade:

Sexo: Masculino Feminino Naturalidade:

Nome do pai:

Nome da mãe:

1.1-Endereço:

Rua: N°:

bairro/Vila: Ponto de referência:

Telefone: Telefone/recados: Falar com:

Telefone/recados: Falar com:

2- Aspectos familiares:

Nome do responsável Legal:

Relação com o atendido:

CPF Idade
:

 Estado Civil: Solteiro: Casado
:

União estável: Viúvo

2.1- Com quem mora: * grau de parentesco partindo da visão do atendido.

Nome. Idade. Grau de

parentesco

Possui
irmãos que
freqüentam
a entidade?

Escolaridade: Profissão: Renda
mensal:

1

2 ABASE

2.1 Aliança Brasileira de Assistência Social e
Educacional

Mantenedora do Projeto Casa do Piá

Rua Maurício de Nassau, 560. CEP 84.070.330 - Vila
Madureira

2.1.1.1 Ponta Grossa-PR - Fone/Fax (042) 3027.6070

CNPJ - 62.207.634/0013-00 - CNSS 44513/67

3-Habitação:

Domicílio Particular permanente: Particular provisório: Particular coletivo: Outros:

Possui Água encanada particular: Luz elétrica particular: Luz elétrica medidor coletivo:

Água encanada medidor coletivo: Possui rede de esgoto Sim: Não:

Edificação Alvenaria: Madeira: Misto: Outros:

Número de cômodos: Quantos cômodos são dormitórios:

4-Assistência Social:

Número do NIS Familiar:

CRAS de Referência:

Recebe Bolsa Família: Sim: Não:

A família frequenta ou recebe auxilio de outro órgão
da rede socioassistencial:

Sim: Não
:

5-Saúde:

Possui problemas de saúde física diagnosticados: Sim: Não:

Possui problemas de saúde mental diagnosticados: Sim: Não:

Faz algum acompanhamento profissional: Sim: Não:

Faz uso continuo de medicamentos: Sim: Não:

Obs:

1

2 ABASE

2.1 Aliança Brasileira de Assistência Social e
Educacional

Mantenedora do Projeto Casa do Piá

Rua Maurício de Nassau, 560. CEP 84.070.330 - Vila
Madureira

2.1.1.1 Ponta Grossa-PR - Fone/Fax (042) 3027.6070

CNPJ - 62.207.634/0013-00 - CNSS 44513/67

6-Escolaridade:

Escola:

Série de 1 a 9 anos*: Turno: Matutin
o:

 Vespertino:

Tem dificuldades de aprendizagem? Sim: Não:

7- Ingresso na Casa do Piá.

Data de início: Data desligamento:

Compareceu a instituição por encaminhamento: CRAS: CREAS:

Conselho Tutelar: Procura espontânea: Outros:

Turno que vai frequentar a Casa do Piá: Matutino: Vespertino:

8-Termo de compromisso:

Eu Comprometo-me a acompanhar

 Durante o período em que o mesmo estiver

inscrito na Casa do Piá, respeitando as normas do regimento interno, participando das reuniões,
mantendo

contato direto e imediato com a coordenação e serviço social para comunicar qualquer fato que

interfira diretamente no atendimento da criança/adolescente inclusive comunicar desistência,
ou

quando for solicitado minha presença na entidade.

Ponta Grossa

Assinatura do responsável:

1

2 ABASE

2.1 Aliança Brasileira de Assistência Social e
Educacional

Mantenedora do Projeto Casa do Piá

Rua Maurício de Nassau, 560. CEP 84.070.330 - Vila
Madureira

2.1.1.1 Ponta Grossa-PR - Fone/Fax (042) 3027.6070

CNPJ - 62.207.634/0013-00 - CNSS 44513/67

Carimbo e assinatura do Assistente
Social responsável pela inscrição:

-

Recorte aqui

PARECER DO ASSISTENTE SOCIAL:

CONTRA REFERÊNCIA (encaminhada ao CRAS via Email)

De: Centro Social Casa do Piá. AO:

Nome do Responsável familiar atendido:

NIS:

Serviço Ofertado:

Atendimento realizado em:

Resumo do Procedimento:

Responsável:

